Quantum Feature Of Branched Hamiltonians
Keywords:
Hamiltonian , Multi-valued , Liénard oscillator , Quantum , Momentum dependent massAbstract
We point out that a quadratic Liénard-type equation, when appropriately interpreted, exhibits branching behavior as a consequence of the double-valued nature of its governing Hamiltonian. Under a suitable approximation involving the coupling constant, we derive the corresponding quantum mechanical model, which is characterized by a momentum-dependent effective mass function.
Downloads
References
C. M. Bender, P. E. Dorey, C. Dunning, A. Fring, D. W. Hook, H. F. Jones, S. Kuzhel, G. Levai, and R. Tateo, PJ Symmetry: In Quantum and Classical Physics, World Scientific, Singapore.
B. P. Mandal, B. K. Mourya, K. Ali and A. Ghatak, Ann. Phys. 363, 185 (2015).
A. Shapere and F. Wilczek, Phys. Rev. Lett. 109, 200402 (2012).
A. Shapere and F. Wilczek, Phys. Rev. Lett. 109, 160402 (2012).
F. Wilczek, Phys. Rev. Lett. 109, 160401 (2012).
M. Henneanx, C. Teitelboim and J. Zanelli, Phys. Rev. A 36, 4417 (1987).
T. L. Curtright and C. K. Zachos, J. Phys. A 42, 485208 (2009).
T. L. Curtright and C. K. Zachos, J. Phys. A 43, 445101 (2010).
T.L. Curtright and A. Veitia, Phys. Lett. A 375, 276 (2011).
T.L. Curtright, SIGMA 7, 042 (2011).
T. L. Curtright and C. K. Zachos, J. Phys. A: Math. Theor. 47, 145201 (2014).
T. L. Curtright, Bulg. J. Phys. 45, 102 (2018).
B. Bagchi, S. Modak, P. K. Panigrahi, F. Ruzicka and M. Znojil, Mod. Phys. Lett. A 30, 1550213 (2015).
B. Bagchi, S. M. Kamil, T. R. Tummuru, I. Semoradova and M. Znojil, J. Phys.: Conf. Series 839, 012011 (2017).
A. Ghose-Choudhury and P. Guha, Mod. Phys. Lett. A 34, 1950263 (2019).
F. Bagarello, J. P. Gazeau, F. H. Szafraniec and M. Znojil, editors, (2015) NonSelfadjoint Operators in Quantum Physics: Mathematical Aspects, John Wiley Sons.
M. Znojil, J. Phys. A: Math. Theor. 48, 195303 (2015).
M. Znojil and G. Levai, Phys. Lett. A 376, 3000 (2012).
C. Quesne and V. M. Tkachuk, J. Phys. A: Math. Gen. 37, 4267 (2004).
B. Bagchi, A. Banerjee, C. Quesne and V. M. Tkachuk, J. Phys. A: Math. Gen. 38, 2929 (2005).
B. Bagchi and T. Tanaka, Phys. Lett. A 372, 5390 (2008).
T. L. Curtright, D. B. Fairlie, and C. K. Zachos, (2014) A Concise Treatise on Quantum Mechanics in Phase Space, Imperial College and World Scientific Press; (ISBN 978-981-4520-43-0).
E. Witten, Nucl. Phys. B 188, 513 (1981).
E. Witten, Nucl. Phys. B 202, 253 (1982).
F. Cooper, A. Khare and U. Sukhatme, Phys. Rep. 251, 267 (1995).
B Bagchi, (2000) Supersymmetry in Quantum and Classical Mechanics, Chapman and Hall/CRC.
M. Znojil, J. Phys. A: Math. Gen 35, 2341 (2002).
B. Bagchi, D. Ghosh and T. R. Tummuru, J. Non. Evol. Eqns and Appl. 2018, 101 (2020).
B. Bagchi, A. Ghose Choudhury and P. Guha, J. Math. Phys. 56, 012105 (2015).
B. Bagchi, R. Ghosh and P. Goswami, J. Phys: Conf. Ser. 1540, 012004 (2020).
A. Liénard, Revue générale de l'électricité 23, 901 (1928).
A. Liénard, Revue générale de l'électricité 23, 946 (1928).
M. Lakshmanan and S. Rajasekar, (2013) Nonlinear dynamics: Integrability chaos and patterns, Springer-Verlag, New York.
V. Chithiika Ruby, M. Senthivelan and M. Lakshmanan, J. Phys. A: Math. Theor. 45, 382002 (2012).
O. von Roos, Phys. Rev. B 27, 7547 (1983).

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dibyendu Ghosh

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on any article in the International Journal of Engineering and Applied Physics is retained by the author(s) under the Creative Commons license, which permits unrestricted use, distribution, and reproduction provided the original work is properly cited.
License agreement
Authors grant IJEAP a license to publish the article and identify IJEAP as the original publisher.
Authors also grant any third party the right to use, distribute and reproduce the article in any medium, provided the original work is properly cited.
Most read articles by the same author(s)
- Dibyendu Ghosh, Nonlinear Evolution Equations : A Brief Review , International Journal of Engineering and Applied Physics: Vol. 5 No. 2: May 2025