Titchmarsh Theorems and K-Functionals for the Two-Sided Quaternion Fourier Transform
Keywords:
Quaternion Fourier transform, Lipschitz class, Dini-Lipschitz class, Titchmarsh theorem, K-functionalAbstract
The purpose of this paper is to study the Quaternion Fourier transforms of functions that satisfy Lipschitz conditions of certain orders. Thus we study the Quaternion Fourier transforms of Lipschitz function in the functions space Lr(R2; H), where H a quaternion algebra which will be specified in due course. Our investigation into the problem was motivated by a theorem proved by Titchmarsh [[29], Theorem 85] for Lipschitz functions on the real line. we will give also some results on calculation of the K-functional which have number of applications of interpolation theory. In particular some recent problems in image processing and singular integral operators require the computation of suitable K-functionals. In this paper we will give some results concerning the equivalence of a K-functional and the modulus of smoothness constructed by the Steklov function.
Downloads
References
Achak, A., Abouelaz, A., Daher, R. et al, Uncertainty Principles for The Quaternion Linear Canonical Transform. Adv. Appl. Clifford Algebras (2019) 29: 99.
A. Abouelaz,A. Achak, R. Daher and N. Safouane, Donoho-Stark’s uncertainty principle for the quaternion Fourier transform, Bol. Soc. Mat. Mex. (2019).
https://doi.org/10.1007/s40590-019-00251-5
A. Abouelaz, R. Daher, M. El Hamma. Fourier transform of Dini-Lipschitz functions in the space, Roman. J. Math. Comput. Sci. 3, 41-47 (2013).
E.S. Belkina and S.S. Platonov, Equivalence of K-functionnals andmodulus of smoothness constructed by generalized dunkl translations, Izv. Vyssh. Uchebn. Zaved. Mat. 8 (2008) 3-15.
M. Bahri a,1, H. Eckhard , A. Hayashi a, R. Ashino, An uncertainty principle for quaternion Fourier transform, Computers and Mathematics with Applications 56 (2008) 2398-2410.
M. Bahri and F. M. Saleh Arif, Relation between Quaternion Fourier Transform and Quaternion Wigner-Ville Distribution Associated with Linear Canonical Transform, Journal of AppliedMathematics, vol. 2017, Article ID 3247364.
R. Bracewell, The Fourier Transform and its Applications, third ed., McGraw-Hill Book Company, New York, 2000.
T. Bülow, Hypercomplex spectral signal representations for the processing and analysis of images, Ph.D. Thesis, Institut für Informatik und Praktische Mathematik, University of Kiel, Germany, 1999.
P. L. Butzer and R.J. Nessel, Fourier Analysis and Approximation, Vol. l. Birkauser Verlag, Basel, 1971.
L.-P. Chen K. I. Kou M.-S. Liu, Pitt’s inequality and the uncertainty principle associated with the quaternion Fourier transform, J. Math. Anal. Appl. (2015).
Feng Dai, Some Equivalence Theorems with K-Functionals, J. Appr. Theory 121, 143-157 (2003).
R. Daher and M. Hamma, Bessel Transform of (k; ) Bessel Lipschitz Functions, Hindawi Publishing Corporation Journal of Mathematics Vol. 2013, Article ID 418546, 3 pages.
R. Daher and M. Hamma, Dunkl transform of Dini-Lipschitz functions, Electronic Journal of Mathematical Analysis and Applications Vol. 1. No. 2, pp. 1-6 (2013). 15
Z. Ditzian and V. Totik, Moduli of Smoothness, Moduli of Smoothness (Springer- Verlag, New York etc., 1987).
Y. El Haoui and S. Fahlaoui, The Uncertainty principle for the two-sided quaternion Fouriertransform, Mediterr. J. Math. (2017) doi:10.1007/s00009-017-1024-5
M. Felsberg, Low-Level image processing with the structure multivector, Ph.D. Thesis, Institut für Informatik und Praktische Mathematik, University of Kiel, Germany, 2002.
X. Guanlei, W. Xiaotong, and X. Xiaogang, Fractional quaternion fourier transform, convolution and correlation, Signal Processing, 88(10), 2511U2517 (2008).
L. Guo, M. Zhu, and X. Ge, Reduced biquaternion canonical transform, convolution and correlation, Signal Processing, 91(8), 2147U2153(2011).
T. L. Hayden and J.H. Wells, on the extension of Lipschitz-Holder maps of order , J. Math. Analysis and Applications, 33 (1971) 627-640.
E. Hitzer, Quaternion Fourier transform on quaternion fields and generalizations, Advances in Applied Clifford Algebras 17 (3) (2007) 497-517.
B. Hu,Y.Zhou, L. D. Lie, and J.Y.Zhang, Polar linear canonical transform in quaternion domain, Journal of Information Hiding and Multimedia Signal Processing, vol. 6, no. 6, pp. 1185-1193, 2015.
K. I. Kou, J.-Y.Ou, and J.Morais, On uncertainty principle for quaternionic linear canonical transform, Abstract and Applied Analysis, vol. 2013, Article ID 725952, 14 pages, 2013.
K. I. Kou and J. Morais, Asymptotic behaviour of the quaternion linear canonical transform and the Bochner-Minlos theorem, Applied Mathematics and Computation, vol. 247, no. 15, pp. 675-688, 2014.
K. I. Kou, J. Y. Ou, and J. Morais, On uncertainty principle for quaternionic linear canonical transform, in Abstract and Applied Analysis, Hindawi Publishing Corporation, Article ID 725952, 2013,14, (2013).
J. Peetre, A Theory of Interpolation of Normed Spaces,Notes de Universidade de Brasilia, 1963.
Mk. Potapov, Application of the Operator of Generalized Translation in Approximation Theory,Vestnik Moskovskogo Universiteta, Seriya Matematika, Mekhanika, 3 (1998), 38-48.
S.S. Platonov, Generalized Bessel Translations and Certain Problems of the Theory of Approximation of Functions in the Metrics of L2; .I,Trudy Petrozavodskogo Gosudarstvennogo Universiteta, Seriya Matematika, 7 (2000), 70-82.
A. Sudbery, Quaternionic analysis, Math. Proc. Cambridge Phil. Soc. 85: 199- 225 (1979).
E.C. Titchmarsh, Introduction to the theory of Fourier Integrals, pp. 115–118. Clarendon Press, Oxford (1937).
Q. Xiang and K-. Y. Qin, On the relationship between the linear canonical transform and the Fourier transform, 2011 4th International Congress on Image and Signal Processing (CISP), 2214-2217.
Y. Yang and K. I. Kou, Uncertainty principles for hypercomplex signals in the linear canonical transform domains, Signal Processing, vol. 95, pp. 67-75, 2014.
M.S. Younis, Fourier transforms of Dini-Lipschitz Functions, Int. J. Math. Math. Sci. 9(2), 301–312 (1986).
M.S. Younis, Fourier Transforms on Lp Spaces, Int. J. Math. Math. Sci. 9(2), 301–312 (1986).
M.S. Younis, Fourier Transforms of Lipschitz Functions on Compact Groups, Ph. D. Thesis. McMaster University (Hamilton, Ont., Canada, 1974).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Azzedine Achak, Radouan Daher, Najat Safouane
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on any article in the International Journal of Engineering and Applied Physics is retained by the author(s) under the Creative Commons license, which permits unrestricted use, distribution, and reproduction provided the original work is properly cited.
License agreement
Authors grant IJEAP a license to publish the article and identify IJEAP as the original publisher.
Authors also grant any third party the right to use, distribute and reproduce the article in any medium, provided the original work is properly cited.
Most read articles by the same author(s)
- Azzedine Achak, Radouan Daher, Najat Safouane, Harmonic analysis associated with the Weinstein type operator on Rd , International Journal of Engineering and Applied Physics: Vol. 1 No. 1: January 2021
- El Mehdi Loualid, Azzedine Achak, Radouan Daher, Hardy’s theorem for the generalized Bessel transform on the half line , International Journal of Engineering and Applied Physics: Vol. 1 No. 3: September 2021
- El Mehdi LOUALID, Azzedine Achak, Radouan Daher, Analogues of Miyachi and Cowling-Price theorems for the generalized Dunkl transform , International Journal of Engineering and Applied Physics: Vol. 2 No. 1: January 2022
- Najat Safouane, Daher Radouan , Uncertainty Principles for the Dunkl-Bessel type transform , International Journal of Engineering and Applied Physics: Vol. 2 No. 1: January 2022