Effect of Some Physical Factors and Chemical Processing on the Yield and Quality of Nanosilica Derived from Rice Husk: Effectiveness of H3PO4 Pre-treatment on Structural and Optical Properties


  • Mbakaan Celestine Teryange Benue State Polytechnic, Ugbokolo


Physical factors, Rice husk, H3PO4, Nano-silica, Silica Yield, Optical properties


The research reports the effect of location, fertilizer application, and chemical pre-treatment on the yield and quality of nanosilica derived from rice husk (RH) and also comprehensively treats the effectiveness of H3PO4 pre-treatment on its structural and optical properties. Sample preparation involves chemical pre-treatment methods and calcination at 550 oC for 6 hours. The result shows that location and fertilizer application affects the yield and quality of silica derived from RH. H3PO4 pre-treatment proved to be very effective and improved both the structural and optical properties of the nanosilica, which is a potential candidate for solid-state lighting and display applications.


Download data is not yet available.


J. Chun, J.H. Lee, Recent progress on the development of engineered silica particles derived from rice husk, Sustain. 12 (2020) 1–19. https://doi.org/10.3390/su122410683.

N. Bisht, P.C. Gope, N. Rani, Rice husk as a fiber in composites: A review, J. Mech. Behav. Mater. 29 (2020) 147–162. https://doi.org/10.1515/jmbm-2020-0015.

Raphael Kungu, Paul Njogu, Robert Kinyua, Jackton Kiptoo, Green Chemistry Preparation and Characterization of Rice Husk Derived Silica Gel in Kenya, J. Environ. Sci. Eng. A. 8 (2019) 225–240. https://doi.org/10.17265/2162-5298/2019.06.001.

S.K.S. Hossain, L. Mathur, P.K. Roy, S.K.S. Hossain, L. Mathur, P.K.R. Rice, Rice husk / rice husk ash as an alternative source of silica in ceramics?: A review, J. Asian Ceram. Soc. 6 (2018) 299–313. https://doi.org/10.1080/21870764.2018.1539210.

S.K.S. Hossain, P.K. Roy, Fabrication of sustainable insulation refractory: Utilization of different wastes, Bol. La Soc. Esp. Ceram. y Vidr. 58 (2019) 115–125. https://doi.org/10.1016/j.bsecv.2018.09.002.

M. Ahmaruzzaman, V.K. Gupta, Rice Husk and Its Ash as Low-Cost Adsorbents in Water and Wastewater Treatment, (2011) 13589–13613.

C. Mbakaan, I. Ahemen, A.N. Amah, A.D. Onojah, L. Koao, White-light-emitting Dy3+-doped amorphous SiO2 nanophosphors derived from rice husk, Appl. Phys. A Mater. Sci. Process. 124 (2018). https://doi.org/10.1007/s00339-018-2156-6.

C. Mbakaan, I. Ahemen, F.B. Dejene, A.D. Onojah, S.J. Motloung, R. Ocaya, A. Reyes-Rojas, A. Reyes-Rojas, Structural and optical properties of nano-SiO 2 derived from the husk of some rice varieties and the effect of doping with Sm 3+ ions, Opt. Mater. Express. 11 (2021) 965. https://doi.org/10.1364/OME.419552.

P.G. Jeelani, P. Mulay, R. Venkat, C. Ramalingam, Multifaceted Application of Silica Nanoparticles. A Review, Silicon. 12 (2020) 1337–1354. https://doi.org/10.1007/s12633-019-00229-y.

N. Liu, K. Huo, M.T. McDowell, J. Zhao, Y. Cui, Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes, Sci. Rep. 3 (2013) 1–7. https://doi.org/10.1038/srep01919.

P. Jain, V. Fuskele, Rice Husk Ash as a Potential Source of Silicon and Its Varied Applications, SSRN Electron. J. (2020). https://doi.org/10.2139/ssrn.3529256.

S. Venkateswaran, R. Yuvakkumar, V. Rajendran, Nano Silicon From Nano Silica Using Natural Resource ( RHA ) for Solar Cell Fabrication, (2012) 37–41. https://doi.org/10.1080/10426507.2012.740106.

R. Konwar, A.B. Ahmed, Nanoparticle: an Overview of Preparation, Characterization and Application, Int. Res. J. Pharm. 4 (2013) 47–57. https://doi.org/10.7897/2230-8407.04408.

W. Pan, N.H. Wang, G.F. Li, G.L. Ning, Monodisperse, luminescent silica spheres synthesized by a new method, Mater. Sci. Forum. 675 677 (2011) 1093–1096. https://doi.org/10.4028/www.scientific.net/MSF.675-677.1093.

H. Chen, Biogenic silica nanoparticles derived from rice husk biomass and their applications, Texas State University, 2013.

A.A. Moosa, B.F. Saddam, Synthesis and Characterization of Nanosilica from Rice Husk with Applications to Polymer Composites, (2017). https://doi.org/10.5923/j.materials.20170706.01.

M.. Haslinawati, K. Matori, Z. Wahab, H.A. Sidek, A.. Zainal, Effect of Temperature on Ceramic from Rice Husk Ash, Int. J. Basic Appl. Sci. 9 (2009) 111–117. https://doi.org/10.1117/3.2315931.ch46.

R.A. Bakar, R. Yahya, S.N. Gan, Production of High Purity Amorphous Silica from Rice Husk, Procedia Chem. 19 (2016) 189–195. https://doi.org/10.1016/j.proche.2016.03.092.

E. Rafiee, S. Shahebrahimi, M. Feyzi, M. Shaterzadeh, Optimization of synthesis and characterization of nanosilica produced from rice husk (a common waste material), Int. Nano Lett. 2 (2012) 29. https://doi.org/10.1186/2228-5326-2-29.

J.S. Lim, Z. Abdul Manan, S.R. Wan Alwi, H. Hashim, A review on the utilization of biomass from rice industry as a source of renewable energy, Renew. Sustain. Energy Rev. 16 (2012) 3084–3094. https://doi.org/10.1016/j.rser.2012.02.051.

E. Rafiee, M. Khodayari, S. Shahebrahimi, M. Joshaghani, 12-Tungstophosphoric acid supported on nano silica from rice husk ash as an efficient catalyst for direct benzylation of 1,3-dicarbonyl compounds in solvent-free condition, J. Mol. Catal. A Chem. 351 (2011) 204–209. https://doi.org/10.1016/j.molcata.2011.10.008.

S.A. Abo-El-Enein, M.A. Eissa, A.A. Diafullah, M.A. Rizk, F.M. Mohamed, Removal of some heavy metals ions from wastewater by a copolymer of iron and aluminum impregnated with active silica derived from rice husk ash, J. Hazard. Mater. 172 (2009) 574–579. https://doi.org/10.1016/j.jhazmat.2009.07.036.

C. Mbakaan, I. Ahemen, A.D. Onojah, A.N. Amah, K.G. Tshabalala, F.B. Dejene, Luminescent properties of Eu 3 + -doped silica nanophosphors derived from rice husk, Opt. Mater. (Amst). 108 (2020) 110168. https://doi.org/10.1016/j.optmat.2020.110168.

H. Chen, W. Wang, J.C. Martin, A.J. Oliphant, P.A. Doerr, J.F. Xu, K.M. DeBorn, C. Chen, L. Sun, Extraction of lignocellulose and synthesis of porous silica nanoparticles from rice husks: A comprehensive utilization of rice husk biomass, ACS Sustain. Chem. Eng. 1 (2013) 254–259. https://doi.org/10.1021/sc300115r.

W. Wang, J.C. Martin, N. Zhang, Harvesting silica nanoparticles from rice husks, J. Nanoparticle Res. 13 (2011) 6981–6990. https://doi.org/10.1007/s11051-011-0609-3.

X. Ma, B. Zhou, W. Gao, Y. Qu, L. Wang, Z. Wang, Y. Zhu, A recyclable method for production of pure silica from rice hull ash, Powder Technol. 217 (2012) 497–501. https://doi.org/10.1016/j.powtec.2011.11.009.

J.A. Adebisi, J.O. Agunsoye, S.A. Bello, I.I. Ahmed, O.A. Ojo, S.B. Hassan, Potential of producing solar grade silicon nanoparticles from selected agro-wastes: A review, Sol. Energy. 142 (2017) 68–86. https://doi.org/10.1016/j.solener.2016.12.001.

K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, M. Maaza, Rice husks as a sustainable source of high quality nanostructured silica for high performance Li-ion battery requital by sol-gel method - a review, Adv. Mater. Lett. 7 (2016) 684–696. https://doi.org/10.5185/amlett.2016.6192.

M.J. Kaleli, P.K. Kamweru, J.M. Gichumbi, F.G. Ndiritu, Characterization of rice husk ash prepared by open air burning and furnace calcination, J. Chem. Eng. Mater. Sci. 11 (2020) 24–30. https://doi.org/10.5897/jcems2020.0348.

B.I. Ugheoke, O. Mamat, A novel method for high volume production of nano silica from rice husk: Process development and product characteristics, Int. J. Mater. Eng. Innov. 3 (2012) 139–155. https://doi.org/10.1504/IJMATEI.2012.046898.

I.B. Ugheoke, O. Mamat, A critical assessment and new research directions of rice husk silica processing methods and properties, Maejo Int. J. Sci. Technol. 6 (2012) 430–448. https://doi.org/10.14456/mijst.2012.31.

S. Azat, A. V. Korobeinyk, K. Moustakas, V.J. Inglezakis, Sustainable production of pure silica from rice husk waste in Kazakhstan, J. Clean. Prod. 217 (2019) 352–359. https://doi.org/10.1016/j.jclepro.2019.01.142.

Z. Zhang, J. Li, X. Li, H. Huang, L. Zhou, T. Xiong, High efficiency iron removal from quartz sand using phosphoric acid, Int. J. Miner. Process. 114–117 (2012) 30–34. https://doi.org/10.1016/j.minpro.2012.09.001.

W. Wang, J.C. Martin, X. Fan, A. Han, Z. Luo, L. Sun, Silica nanoparticles and frameworks from rice husk biomass, ACS Appl. Mater. Interfaces. 4 (2012) 977–981. https://doi.org/10.1021/am201619u.

L.F. Koao, H.C. Swart, R.I. Obed, F.B. Dejene, Synthesis and characterization of Ce 3 + doped silica ( SiO 2 ) nanoparticles, J. Lumin. 131 (2011) 1249–1254. https://doi.org/10.1016/j.jlumin.2010.10.038.

A.E. Abbass, H.C.S.R.E. Kroon, White luminescence from sol–gel silica doped with silver, J. Sol-Gel Sci. Technol. 76 (2015) 708–714. https://doi.org/10.1007/s10971-015-3825-y.

S. Duhan, P. Aghamkar, B. Lal, Influence of temperature and time on Nd-doped silica powder prepared by the solgel process, J. Alloys Compd. 474 (2009) 301–305. https://doi.org/10.1016/j.jallcom.2008.06.095.

Y. Ishikawa, S. Kawasaki, Y. Ishi, K. Sato, A. Matsumura, White photoluminescence from carbon-incorporated silica fabricated from rice husk, Jpn. J. Appl. Phys. 51 (2012). https://doi.org/10.1143/JJAP.51.01AK02.

L. Gong, H. Zou, G. Wang, Y. Sun, Q. Huo, X. Xu, Y. Sheng, Synthesis and luminescence properties of monodisperse SiO2@SiO2:Eu3+ microspheres, Opt. Mater. (Amst). 37 (2014) 583–588. https://doi.org/10.1016/j.optmat.2014.07.025.

Rachna Ahlawat, Synthesis and Characterizations of Europium doped Silica Nanophosphor., Int. J. Adv. Res. Sci. Eng. 6 (2017) 1077–1085.

C. Lin, Y. Song, F. Gao, H. Zhang, Y. Sheng, K. Zheng, Z. Shi, X. Xu, H. Zou, Synthesis and luminescence properties of Eu(III)-doped silica nanorods based on the sol-gel process, J. Sol-Gel Sci. Technol. 69 (2014) 536–543. https://doi.org/10.1007/s10971-013-3254-8.

Y. Liu, Z. Wang, H. Zeng, C. Chen, J. Liu, L. Sun, W. Wang, Photoluminescent mesoporous carbon-doped silica from rice husks, Mater. Lett. 142 (2015) 280–282. https://doi.org/10.1016/j.matlet.2014.12.034.

Z. Wei, Z. Wang, W.R.T. Tait, M. Pokhrel, Y. Mao, J. Liu, L. Zhang, W. Wang, L. Sun, Synthesis of green phosphors from highly active amorphous silica derived from rice husks, J. Mater. Sci. 53 (2018) 1824–1832. https://doi.org/10.1007/s10853-017-1637-x.

Z. Wang, S. Zeng, Y. Li, W. Wang, Z. Zhang, H. Zeng, W. Wang, L. Sun, Luminescence Mechanism of Carbon-Incorporated Silica Nanoparticles Derived from Rice Husk Biomass, Ind. Eng. Chem. Res. 56 (2017) 5906–5912. https://doi.org/10.1021/acs.iecr.7b00700.

article IJEAP : Effect of Some Physical Factors and Chemical Processing on the Yield and Quality of Nanosilica Derived from Rice Husk: Effectiveness of H3PO4 Pre-treatment on Structural and Optical Properties




How to Cite

M. Celestine Teryange, “Effect of Some Physical Factors and Chemical Processing on the Yield and Quality of Nanosilica Derived from Rice Husk: Effectiveness of H3PO4 Pre-treatment on Structural and Optical Properties”, International Journal of Engineering and Applied Physics, vol. 3, no. 3, pp. 865–878, Oct. 2023.