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 We consider a mathematical model, which describes a contact problem 

between a piezoelectric body and a conductive foundation. The linear electro-

elastic constitutive law is employed to model the piezoelectric material. The 

process is static, the contact is frictionless and described with the normal 

compliance condition and an electric contact condition. Our aim is to present 

a detailed description of the numerical modelling of the problem. To this end, 

we introduce a discrete scheme, based on the finite element method to 

approximate the spatial variable. Then we treat the contact conditions by using 

a penalized approach and a version of Newton's method.  Finally, we provide 

numerical simulations in the study of a two-dimensional example and compare 

the regularized problem with the original one. 
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1. INTRODUCTION  

The effective conversion of the electrical energy into mechanical energy and vice versa has led the 

piezoelectric materials to important   applications in many engineering structures such as sensors, actuators, 

intelligent structures, etc. Currently, there exists a considerable interest in contact problems involving 

piezoelectric materials, under the assumption that the foundation is electrically conductive (see, [1-6]).   

The results in [1-6] concern the variational formulation of the problems and their numerical 

simulations. For all these references, the contact is described with a regularized electrical conductivity 

condition. A similar model was studied in [7] for almost perfect electric contact. The result in [7] concern the 

existence of solution for problem, however, no numerical analyse was studied. Here we continue this line of 

research and study a contact between electro-elastic body and a deformable conductive foundation. The contact 

is frictionless and is modelled with normal compliance condition. The analyse of the mechanical model is based 

on the assumption that the electric contact conditions are supposed almost perfect, our interest in this paper is 

to provide the numerical modelling of the contact  problem supported by numerical simulations. To this end, 

we present a discretization of the problem and we describe details of the numerical algorithm we use.   

The main novelty of our work arises from the fact that we study two problems: an original problem 

constructed with almost perfect electrical contact, and a regularization one constructed by considering a 

regularized condition on the electric field on the potential contact zone. In this paper, we provide a reliable 

comparison between numerical solutions of the approximate contact problem and the original one. Finally, we 

present numerical simulations, which validate our approximation method and give information on the 

mechanical behaviour of the solution.   
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The rest of paper is structured as follows. In Section 2 the piezoelectric contact problem is stated 

together with two variational formulations. A discrete scheme, based on the finite element, and the numerical 

algorithm used for solving the discrete problem are described in Section 3. In Section 4, we present   numerical 

simulations in the study of a two-dimensional test problem.  Finally, in Section 5 we present some conclusions 

and perspectives. 

 

 

2. VARIATIONAL FORMULATION AND ITS REGULARISED 

The physical setting is the following. A piezoelectric body occupies a regular domain 𝛺 ⊂ ℝ𝑑 , 𝑑 =
2, 3 with a smooth boundary 𝜕𝛺 = 𝛤. We use boldface letters for vectors and tensors, such as the outward unit 

normal on 𝛤, denoted by 𝝂 = (𝜈𝑖).  The body is submitted to the action of body forces of density 𝒇0 and volume 

electric charges of density 𝑞0. It is also submitted to mechanical and electric constraints on the boundary. To 

describe them, we consider a partition of 𝛤 into three measurable parts  𝛤𝐷 , 𝛤𝑁 ,  𝛤𝐶 , on one hand, and a partition 

of  𝛤𝐷 ∪ 𝛤𝑁  into two open parts  𝛤𝑎 and 𝛤𝑏 , on the other hand. We assume that 𝑚𝑒𝑎𝑠𝛤𝐷 > 0 and 𝑚𝑒𝑎𝑠𝛤𝑎 > 0.  

The body is clamped on  𝛤𝐷; therefore, the displacement field vanishes there.  Moreover, we assume that a 

density of traction forces, denoted by  𝒇𝑁 , acts on the boundary part 𝛤𝑁. We also assume that the electrical 

potential vanishes on 𝛤𝑎  and a surface electric charge of density 𝑞𝑏   is prescribed on 𝛤𝑏 .  In the reference 

configuration, the body is in contact over 𝛤𝐶   with an electrically conductive foundation. We assume that its 

potential is maintained at  𝜑𝑓. The contact is frictionless and described with the normal compliance condition.   

Here and everywhere in this paper 𝑖, 𝑗, 𝑘, 𝑙  run from 1 to 𝑑, summation over repeated indices is implied and 

the index that follows a comma represents the partial derivative with respect to the corresponding component 

of the spatial variable, i.e. 𝑓,𝑖 =
𝜕𝑓

𝜕𝑥𝑖
 .   

We denote by 𝒖 = (𝑢𝑖) ∊ ℝ𝑑 the displacement vector, by 𝝈 = (𝜎𝑖𝑗) ∈  𝑆𝑑 the stress tensor, by  

𝜀(𝒖) = (𝜀𝑖𝑗(𝒖)) ∈  𝑆𝑑  the linearized strain tensor, i.e.  𝜀𝑖𝑗(𝒖) = (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)/2, by 𝑬(𝜑) = −∇𝜑 = −(𝜑,𝑖) ∊

ℝ𝑑 the electric vector field, where 𝜑 ∊ ℝ is the electric potential, and 𝑫 = (𝐷𝑖) ∊ ℝ𝑑 by the electric 

displacement filed.  The notation 𝑆𝑑 stands for the space of second order symmetric tensors on  ℝ𝑑.    The 

functions 𝒖 ∊ ℝ𝑑 and  𝜑 ∊ ℝ   are the unknowns of the problem, and, for simplicity, we do not indicate the 

dependence the functions on the variable   𝒙 ∈ Ω ∪ Γ. 

The body is assumed to be electro-elastic and, therefore, we use the constitutive law 

 

𝝈 =  ℱ𝜀(𝒖)  −  ℰ𝑇𝑬(𝜑)      𝑖𝑛 𝛺,        (1) 

𝑫 = ℰ𝜀(𝒖)  +  𝛽𝑬(𝜑)     𝑖𝑛 𝛺.  (2) 

Here  ℱ = (𝑓𝑖𝑗𝑘𝑙),  ℰ = (𝑒𝑖𝑗𝑘) and 𝛽 = (𝛽𝑖𝑗) are respectively, the elasticity, piezoelectric and permittivity 

tensors.  ℰ𝑇  is the transpose of ℰ. Also the tensors ℰ and  ℰ𝑇  satisfy the equality ℰ𝝈 ⋅ 𝒗 = 𝝈 ⋅ ℰ𝑇𝒗   ∀ 𝝈 ∈ 𝑆𝑑,
𝒗 ∈ ℝ𝑑, and the components of the tensor ℰ𝑇  are given by 𝑒𝑖𝑗𝑘

𝑇 = 𝑒𝑘𝑖𝑗 . 

 Since the process is assumed static, then the equation of stress equilibrium and the equation of the 

quasi-stationary electric field, respectively, given by 

 

𝐷𝑖𝑣 𝝈 + 𝒇0 = 𝟎    𝑖𝑛 𝛺,   (3) 

𝑑𝑖𝑣 𝑫 = 𝑞0     𝑖𝑛 𝛺.   (4) 

Here  “ 𝐷𝑖𝑣 ”  and “ 𝑑𝑖𝑣 ” denote the divergence operators for tensor and vector valued functions, i.e. 𝐷𝑖𝑣 𝝈 =

(𝜎𝑖𝑗,𝑖), 𝑑𝑖𝑣 𝑫 = (𝐷𝑖,𝑖). 

 We turn to describe the boundary conditions, so on the 𝛤𝐷 ∪ 𝛤𝑁 portion of the boundary, we impose 

the following conditions  

 

𝒖 = 𝟎     𝑜𝑛 𝛤𝐷 ,   (5) 

𝝈𝝂 = 𝒇𝑁     𝑜𝑛 𝛤𝑁 .   (6) 

The boundary conditions for the electric potential can be defined in the following forms: 
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𝜑 = 0     𝑜𝑛 𝛤𝑎 ,         (7) 

𝑫. 𝝂 = 𝑞𝑏      𝑜𝑛 𝛤𝑏 .   (8) 

 We now describe the electro-mechanical boundary conditions on the potential contact surface  𝛤𝐶 . We assume 

that the normal displacement  𝑢𝜈 = 𝒖 ⋅ 𝝂, the normal stress 𝜎𝜈 = 𝜎𝑖𝑗𝜈𝑖𝜈𝑗 and the tangential stress 𝝈𝜏 = 𝝈𝝂 −

𝜎𝜈𝝂   satisfy the condition of normal compliance without friction: 

  

𝜎𝜈 = −𝑐𝜈(𝑢𝜈 − 𝑔)+ ,   𝝈𝜏 = 𝟎     𝑜𝑛 𝛤𝐶 ,   (9) 

where  𝑐𝜈 is a positive constant, 𝑔 is the gap between the body and the foundation and  ( .  )+ stands for the 

positive part so that (𝑢𝜈 − 𝑔)+  represents the penetration of the body into the foundation. Moreover, there 

may be electrical charges on the contact surface: 

  

𝑫. 𝝂 = 𝑘𝑒𝜒[0,∞)(𝑢𝜈 − 𝑔)(𝜑 − 𝜑𝑓)     𝑜𝑛 𝛤𝐶 ,   (10) 

where 𝑘𝑒 > 0 is the electrical conductivity coefficient and  𝜒[0,∞)( . ) is the characteristic function of the 

interval   [0,∞), that is  

 

𝜒[0,∞)(𝑟) = {
0, 𝑟 < 0,
1, 𝑟 ≥ 0.

   (11) 

 

Condition (10) describes perfect electrical contact, see [1]. 

 We collect the above equations and conditions to obtain the following mathematical problem. 

Problem 𝑃. Find a displacement field  𝒖 ∊ ℝ𝑑, a stress field  𝝈 ∊ 𝑆𝑑, an electric potential 𝜑 ∊ ℝ and an electric 

displacement field  𝑫 ∊ ℝ𝑑 such that   

𝝈 = ℱ𝜀(𝒖)  − ℰ𝑇𝑬(𝜑)      𝑖𝑛 𝛺,        (12) 

𝑫 = ℰ𝜀(𝒖)  +  𝛽𝑬(𝜑)     𝑖𝑛 𝛺,  (13) 

𝐷𝑖𝑣 𝝈 + 𝒇0 = 𝟎    𝑖𝑛 𝛺,   (14) 

𝑑𝑖𝑣 𝑫 = 𝑞0     𝑖𝑛 𝛺,   (15) 

𝒖 = 𝟎     𝑜𝑛 𝛤𝐷 ,   (16) 

𝝈𝝂 = 𝒇𝑁     𝑜𝑛 𝛤𝑁 ,   (17) 

𝜑 = 0     𝑜𝑛 𝛤𝑎 ,         (18) 

𝑫. 𝝂 = 𝑞𝑏      𝑜𝑛 𝛤𝑏 ,   (19) 

𝜎𝜈 = −𝑐𝜈(𝑢𝜈 − 𝑔)+ ,   𝝈𝜏 = 𝟎     𝑜𝑛 𝛤𝐶 ,   (20) 

𝑫. 𝝂 = 𝑘𝑒𝜒[0,∞)(𝑢𝜈 − 𝑔)(𝜑 − 𝜑𝑓)     𝑜𝑛 𝛤𝐶 .   (21) 

We now turn to the variational formulation of Problem  𝑃, which is the starting point for the numerical 

modelling based on the finite element discretization. We denote in the sequel by “ . ” and ∥ . ∥  the inner product 

and the Euclidean norm on the spaces  ℝ𝑑 and 𝑆𝑑. We start by introducing the spaces 𝐻 = 𝐿2(Ω, ℝ𝑑), 𝒦 =

𝐿2(Ω, 𝑆𝑑). The spaces 𝐻 and 𝒦 are Hilbert spaces equipped with the inner products  (𝒖, 𝒗)𝐻 = ∫ 𝒖 ⋅ 𝒗
Ω

𝑑𝑥 and 

(𝝈, 𝝉)𝒦 = ∫ 𝝈 ⋅ 𝝉
Ω

 𝑑𝑥, respectively. The associated norms in 𝐻 and 𝒦  are denoted by || ⋅ ||𝐻 and  || ⋅ ||𝒦 , 

respectively.  

For the displacement and the electric potential fields, we introduce the spaces 𝑉 = {𝒗 ∈ 𝐻1(Ω, ℝ𝑑);  𝒗 =
𝟎  𝑜𝑛  𝛤𝐷} and 𝑊 = {𝜓 ∈ 𝐻1(𝛺);  𝜓 = 0  𝑜𝑛  𝛤𝑎}. On 𝑉 and 𝑊 we consider the inner products and the 

corresponding norms given by 

 

(𝒖, 𝒗)𝑉 = (𝜀(𝒖), 𝜀(𝒗))
𝒦
 ,     ||𝒗||𝑉 = ||𝜀(𝒗)||𝒦    for all  𝒖, 𝒗 ∈ 𝑉,  (22) 

(𝜑, 𝜓)𝑊 = (∇𝜑, ∇𝜓)𝐻 ,     ||𝜓||𝑊 = ||∇𝜓||𝐻   for all  𝜑, 𝜓 ∈ 𝑊.  (23) 
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Since 𝑚𝑒𝑎𝑠(Γ𝐷) > 0 and 𝑚𝑒𝑎𝑠(Γ𝑎) > 0 are positive, it follows from the Korn and the Friedrichs-Poincaré 

inequalities, respectively, that (𝑉, || ⋅ ||𝑉) and (𝑊, || ⋅ ||𝑊) are Hilbert spaces. 

 We consider the two mapping    𝒇 ∊ 𝑉 𝑎𝑛𝑑 𝑞 ∊ 𝑊, defined by 

 

(𝒇,𝒘)𝑉 = ∫𝒇0 ⋅ 𝒘 𝑑𝑥
Ω

+ ∫ 𝒇𝑁 ⋅ 𝒘 𝑑𝑎,
Γ𝑁

 
 (24) 

(𝑞, 𝜓)𝑊 = ∫𝑞0𝜓 𝑑𝑥
Ω

− ∫ 𝑞𝑏𝜓 𝑑𝑎,
Γ𝑏

 
 (25) 

for all 𝒘 ∈ 𝑉 and 𝜓 ∈ 𝑊. 
 Then, the   variational formulation of the contact problem 𝑃 obtained by multiplying the equations 

with the relevant test functions and performing integration by part is as follows. 

Problem 𝑃𝑉 .  Find a displacement field  𝒖 ∊ 𝑉 and an electric potential  𝜑 ∊ W such that  

(ℱ𝜀(𝒖), 𝜀(𝒘))
𝒦

+ (ℰ𝑇𝛻𝜑, 𝜀(𝒘))
𝒦

+ ∫ 𝑐𝜈(𝑢𝜈 − 𝑔)+𝑤𝜈  𝑑𝑎
Γ𝐶

= (𝒇,𝒘)𝑉         ∀ 𝒘 ∈ 𝑉, 
 (26) 

(𝛽𝛻𝜑, 𝛻𝜓)𝐻 − (ℰ𝜀(𝒖), 𝛻𝜓)𝐻 + ∫ 𝑘𝑒𝜒[0,∞)(𝑢𝜈 − 𝑔)(𝜑 − 𝜑𝑓)𝜓 𝑑𝑎
Γ𝐶

= (𝑞, 𝜓)𝑊      ∀𝜓 ∈ 𝑊. 
 (27) 

We consider the truncation of the function 𝜒[0,∞) noted 𝜓𝛿  and it’s defined by 

 

𝜓𝛿(𝑟) = {

0 𝑖𝑓 𝑟 < 0,
𝑟

𝛿
𝑖𝑓 0 ≤ 𝑟 ≤  𝛿

1 𝑖𝑓 𝑟 > 𝛿.

, 

   

(28) 

𝛿 is a small parameter which will tend to zero in the sequel. 

Replacing 𝜒[0,∞) by the function  𝜓𝛿  leads us to replacing  ∫ 𝑘𝑒𝜒[0,∞)(𝑢𝜈 − 𝑔)(𝜑 − 𝜑𝑓)𝜓 𝑑𝑎
Γ𝐶

 in 𝑃𝑉 by 

∫ 𝑘𝑒𝜓𝛿  (𝑢𝜈 − 𝑔)(𝜑 − 𝜑𝑓)𝜓 𝑑𝑎
Γ𝐶

   and we introduce now a regularized problem  𝑃𝑉𝛿
. 

Problem 𝑃𝑉𝛿
.  Find a displacement field   𝒖𝛿 ∊ 𝑉 and an electric potential  𝜑𝛿 ∊ W such that  

(ℱ𝜀(𝒖𝛿), 𝜀(𝒘))
𝒦

+ (ℰ𝑇𝛻𝜑𝛿 , 𝜀(𝒘))
𝒦

+ ∫ 𝑐𝜈(𝑢𝛿𝜈
− 𝑔)

+
𝑤𝜈  𝑑𝑎

Γ𝐶

= (𝒇,𝒘)𝑉        ∀ 𝒘 ∈ 𝑉, 
 (29) 

(𝛽𝛻𝜑𝛿 , 𝛻𝜓)𝐻 − (ℰ𝜀(𝒖𝛿), 𝛻𝜓)𝐻 + ∫ 𝑘𝑒𝜓𝛿(𝑢𝛿𝜈
− 𝑔)(𝜑𝛿 − 𝜑𝑓)𝜓 𝑑𝑎

Γ𝐶

= (𝑞, 𝜓)𝑊     ∀𝜓 ∈ 𝑊. 
 (30) 

3. NUMERICAL APPROACH  

We now present a discrete approximation of Problems  𝑃𝑉 and  𝑃𝑉𝛿
. First, we consider two finite dimensional 

spaces  𝑉ℎ ⊂ 𝑉 and 𝑊ℎ ⊂ 𝑊 approximating the spaces  𝑉 and  𝑊, respectively, in which ℎ > 0 denotes the 

spatial discretization parameter.  In the numerical simulations presented in the next section, 𝑉ℎ and 𝑊ℎ  

consist of continuous and piecewise affine functions, that is, 

 

𝑉ℎ = {𝒘ℎ ∈ [𝐶(Ω)]
𝑑
 ;  𝒘ℎ

/𝑇𝑟
∊  [𝑃1(𝑇𝑟)]𝑑  𝑇𝑟 ∊  𝑇ℎ, 𝒘ℎ = 𝟎  𝑜𝑛  𝛤𝐷},  (31) 

𝑊ℎ = {𝜓ℎ ∈ [𝐶(Ω)] ;  𝜓ℎ
/𝑇𝑟

∊ [𝑃1(𝑇𝑟)]  𝑇𝑟 ∊  𝑇ℎ, 𝜓ℎ = 0  𝑜𝑛  𝛤𝑎} ,  (32) 

where  Ω is assumed to be a polygonal domain, 𝑇ℎ denotes a finite element triangulation of Ω, and  𝑃1(𝑇𝑟) 

represents the space of polynomials of global degree less or equal to one in 𝑇𝑟. 

 The discrete   approximation of Problem 𝑃𝑉  is the following. 

Problem 𝑃𝑉
ℎ .  Find a discrete displacement 𝒖ℎ ∊ 𝑉𝒉 and a discrete electric potential  𝜑ℎ ∊ W𝒉 such that  
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(ℱ𝜀(𝒖ℎ), 𝜀(𝒘ℎ))
𝒦

+ (ℰ𝑇𝛻𝜑ℎ, 𝜀(𝒘ℎ))
𝒦

+ ∫ 𝑐𝜈(𝑢𝜈
ℎ − 𝑔ℎ)+𝑤𝜈

ℎ  𝑑𝑎
Γ𝐶

                    

= (𝒇ℎ, 𝒘ℎ)𝑉         ∀ 𝒘ℎ ∈ 𝑉ℎ, 

 (33) 

(𝛽𝛻𝜑ℎ, 𝛻𝜓ℎ)𝐻 − (ℰ𝜀(𝒖ℎ), 𝛻𝜓ℎ)𝐻 + ∫ 𝑘𝑒𝜒[0,∞)(𝑢𝜈
ℎ − 𝑔ℎ)(𝜑ℎ − 𝜑𝑓

ℎ)𝜓ℎ  𝑑𝑎
Γ𝐶

= (𝑞ℎ, 𝜓ℎ)𝑊      ∀𝜓ℎ ∈ 𝑊ℎ. 

 (34) 

In a similar way, the discrete version of the regularized Problem 𝑃𝑉𝛿
 can be formulated as follows. 

Problem 𝑃𝑉
ℎ
𝛿.  Find a discrete displacement 𝒖𝛿

ℎ  ∊ 𝑉𝒉 and a discrete electric potential  𝜑𝛿
ℎ ∊ W𝒉 such that  

(ℱ𝜀(𝒖𝛿
ℎ), 𝜀(𝒘ℎ))

𝒦
+ (ℰ𝑇𝛻𝜑𝛿

ℎ, 𝜀(𝒘ℎ))
𝒦

+ ∫ 𝑐𝜈(𝑢𝛿
ℎ

𝜈
− 𝑔ℎ)

+
𝑤𝜈

ℎ  𝑑𝑎
Γ𝐶

                    

= (𝒇ℎ, 𝒘ℎ)𝑉         ∀ 𝒘ℎ ∈ 𝑉ℎ, 

 (35) 

(𝛽𝛻𝜑𝛿
ℎ, 𝛻𝜓ℎ)

𝐻
− (ℰ𝜀(𝒖𝛿

ℎ), 𝛻𝜓ℎ)
𝐻

+ ∫ 𝑘𝑒𝜓𝛿(𝑢𝛿
ℎ

𝜈
− 𝑔ℎ)(𝜑𝛿

ℎ − 𝜑𝑓
ℎ)𝜓ℎ  𝑑𝑎

Γ𝐶

= (𝑞ℎ, 𝜓ℎ)𝑊      ∀𝜓ℎ ∈ 𝑊ℎ. 

 (36) 

We now describe the numerical solution of the variational Problems 𝑃𝑉
ℎ and 𝑃𝑉

ℎ
𝛿
. The numerical treatment 

of the condition of normal compliance is based on the penalty approach (see [8-10] for more details).    Let  

𝑁𝑡𝑜𝑡
ℎ    be the total number of nodes and denote by   𝛼𝑖,  𝛽𝑖  the basis functions of the spaces 𝑉𝒉 and   𝑊𝒉, 

respectively, for  𝑖 = 1,… , 𝑁𝑡𝑜𝑡
ℎ .  Then, the expression of functions  𝒘ℎ ∊ 𝑉𝒉  and  𝜓ℎ ∊ 𝑊𝒉  is given by 𝒘ℎ =

∑ 𝒘𝑖𝛼𝑖𝑁𝑡𝑜𝑡
ℎ

𝑖=1 , 𝜓ℎ = ∑ 𝜓𝑖𝛽𝑖   
𝑁𝑡𝑜𝑡

ℎ

𝑖=1  where 𝒘𝑖  and 𝜓𝑖  represent the values of the corresponding functions 𝒘 and 𝜓 

at the 𝑖𝑡ℎ node of the uniform triangulation of  Ω, denoted by  𝑇ℎ. 

The penalized approach we use shows that the Problem  𝑃𝑉
ℎ  can be governed by the system of non-linear 

equations 

 

𝑅(𝒖, 𝜑) =  G(𝒖, 𝜑)  +  𝐹(𝒖, 𝜑) = 𝟎,   (37) 

where the functions  G and 𝐹 are defined below. Here, the vectors 𝒖 ∈ ℝ𝑑×𝑁𝑡𝑜𝑡
ℎ

  and  𝜑 ∈ ℝ𝑁𝑡𝑜𝑡
ℎ

  are defined 

by  𝒖 = {𝒖𝑖}
𝑖=1

𝑁𝑡𝑜𝑡
ℎ

 and 𝜑 = {𝜑𝑖  }𝑖=1

𝑁𝑡𝑜𝑡
ℎ

, where  𝒖𝑖 and 𝜑𝑖    represent the value of the function  𝒖ℎ and  𝜑ℎ at the  

𝑖𝑡ℎ  nodes of  𝑇ℎ.    

Next, the electro-elastic term 𝐺(𝒖, 𝜑) ∈ ℝ𝑑×𝑁𝑡𝑜𝑡
ℎ

× ℝ𝑁𝑡𝑜𝑡
ℎ

  is defined by    

 

(𝐺(𝒖, 𝜑) ⋅ (𝒘, 𝜓))
ℝ𝑑×𝑁𝑡𝑜𝑡

ℎ
×ℝ𝑁𝑡𝑜𝑡

ℎ  

= (ℱ𝜀(𝒖ℎ), 𝜀(𝒘ℎ))
𝒦

+ (ℰ𝑇𝛻𝜑ℎ, 𝜀(𝒘ℎ))
𝒦

− ( 𝒇ℎ, 𝒘ℎ)𝑉  +  (𝛽𝛻𝜑ℎ , 𝛻𝜓ℎ)𝐻

− (ℰ𝜀(𝒖ℎ), 𝛻𝜓ℎ)𝐻  − ( 𝑞ℎ, 𝜓ℎ)𝑊 

∀ 𝒘 ∈ ℝ𝑑×𝑁𝑡𝑜𝑡
ℎ

, ∀ 𝜓 ∈ ℝ𝑁𝑡𝑜𝑡
ℎ

, ∀ 𝒘ℎ ∈ 𝑉ℎ, ∀𝜓ℎ ∈ 𝑊ℎ . 
 

  (38) 

Above, 𝒘 and 𝜓  represent the   vectors of components 𝒘𝑖  and 𝜓𝑖 , for 𝑖 = 1,… , 𝑁𝑡𝑜𝑡
ℎ   respectively. Finally, the 

electro-mechanical contact operator  𝐹(𝒖, 𝜑) ∈ ℝ𝑑×𝑁𝑡𝑜𝑡
ℎ

× ℝ𝑁𝑡𝑜𝑡
ℎ

   is defined by 

 

(𝐹(𝒖, 𝜑), (𝒘, 𝜓))
ℝ𝑑×𝑁𝑡𝑜𝑡

ℎ
×ℝ𝑁𝑡𝑜𝑡

ℎ

= ∫ 𝑐𝜈(𝑢𝜈
ℎ − 𝑔ℎ)+𝑤𝜈

ℎ  𝑑𝑎
Γ𝐶

  + ∫ 𝑘𝑒𝜒[0,∞)(𝑢𝜈
ℎ − 𝑔ℎ)(𝜑ℎ − 𝜑𝑓

ℎ)𝜓ℎ  𝑑𝑎
Γ𝐶

       

∀ 𝒘 ∈  ℝ𝑑×𝑁𝑡𝑜𝑡
ℎ

, ∀ 𝜓 ∈  ℝ𝑁𝑡𝑜𝑡
ℎ

. 

 

 

  (39) 

 Note that, in the case of regularized Problem   𝑃𝑉
ℎ

𝛿
, the contact operator 𝐹(𝒖, 𝜑) ∈ ℝ𝑑×𝑁𝑡𝑜𝑡

ℎ
× ℝ𝑁𝑡𝑜𝑡

ℎ
 is given 

by 
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(𝐹(𝒖, 𝜑), (𝒘, 𝜓))
ℝ𝑑×𝑁𝑡𝑜𝑡

ℎ
×ℝ𝑁𝑡𝑜𝑡

ℎ

= ∫ 𝑐𝜈(𝑢𝜈
ℎ − 𝑔ℎ)+𝑤𝜈

ℎ  𝑑𝑎
Γ𝐶

  + ∫ 𝑘𝑒𝜓𝛿(𝑢𝜈
ℎ − 𝑔ℎ)(𝜑ℎ − 𝜑𝑓

ℎ)𝜓ℎ  𝑑𝑎
Γ𝐶

       

∀ 𝒘 ∈  ℝ𝑑×𝑁𝑡𝑜𝑡
ℎ

, ∀ 𝜓 ∈  ℝ𝑁𝑡𝑜𝑡
ℎ

. 

 

 

  (40) 

The solution of the non-linear system (37) is based on a linear iterative method similar to that used in the 

Newton method, which permits to treat simultaneously the two unknowns 𝒖 and 𝜑 and, for this reason, we use 

in what follows the notation 𝐱 = (𝒖, 𝜑). This Newton algorithm can be summarized by the following iteration 

process    

 

𝐱i+1 =  𝐱i − (𝐾𝑖  +  𝑇𝑖)−1𝑅(𝒖𝑖 , 𝜑𝑖),  (41) 

where 𝐱i+1 denotes the pair (𝒖𝑖+1, 𝜑𝑖+1) and 𝑖 represent   the Newton iteration index;  𝐾𝑖 = 𝐷𝒖,𝜑𝐺(𝒖𝑖 , 𝜑𝑖) 

represents the elastic matrix and  𝑇𝑖 = 𝐷𝒖,𝜑𝐹(𝒖𝑖 , 𝜑𝑖) is the contact tangent matrix; also,  𝐷𝒖,𝜑𝐺  and 𝐷𝒖,𝜑𝐹 

denote the differentials of the functions  𝐺 and 𝐹 with respect to the variables 𝒖 and 𝜑. This leads us to solve 

the resulting linear system 

 

(𝐾𝑖  +  𝑇𝑖)∆𝐱𝑖 = −𝑅(𝒖𝑖 , 𝜑𝑖),   (42) 

where  ∆𝐱𝑖 = (∆𝒖𝑖, ∆𝜑𝑖) with  ∆𝒖𝑖 = 𝒖𝑖+1 − 𝒖𝑖 and  ∆𝜑𝑖 = 𝜑𝑖+1 − 𝜑𝑖 .  

 

 Note that formulation (37) has been implemented in the open-source finite element library GetFEM++ 

(see [11]). 

 

4. NUMERICAL SIMULATIONS 

For the numerical simulations, we consider the physical setting depicted in Figure 1.  In this case, the body 

𝛺 = (0 , 3) × (0 , 1) ⊂ ℝ2   is clamped on   𝛤𝐷 = {0} × [0 , 1] ⋃ {3} × [0 , 1] = 𝛤𝑏 .   Vertical tractions act 

on   𝛤𝑁 = [0 , 1] × {3}, i.e., 𝒇𝑁 = (0,− 60)𝑁/𝑚  and the electric potential is free there (we choose   𝛤𝑁 =
𝛤𝑎).  The body is in contact with a conductive foundation on its lower boundary  𝛤𝐶 = [0 , 3] × {0}.      No 

volume forces and no electric charges   are supposed to act in the body, i.e.  𝒇0 = 𝟎𝑁 𝑚2,⁄   𝑞0 = 0𝐶 𝑚2⁄  

and 𝑞𝑏 = 0𝐶 𝑚⁄ .  

In the plane of deformations setting, the constitutive law in Equations (1) and (2) can be written by using a 

compressed matrix notation in place of the tensor notation as follows 

 

[
 
 
 
 
𝜎22

𝜎33

𝜎23

𝐷2

𝐷3 ]
 
 
 
 

=

[
 
 
 
 
𝑓22 𝑓23 0
𝑓23 𝑓33 0
0 0 𝑓44

0 𝑒32

0 𝑒33

𝑒24 0

0 0 𝑒24

𝑒32 𝑒33 0
−𝛽22 0

0 −𝛽33]
 
 
 
 

[
 
 
 
 
𝜀22

𝜀33

2𝜀23

−𝐸2

−𝐸3]
 
 
 
 

. 

 

Here, we use as material the piezoelectric body whose constants are taken as [1]: 

• Elastic [𝐺𝑃𝑎]: 𝑓22 = 210, 𝑓23 = 105, 𝑓33 = 211, 𝑓44 = 42.5; 

• Piezoelectric [𝐶/𝑚2]: 𝑒32 = −0.61, 𝑒33 = 1.14, 𝑒24 = −0.59; 

• Permittivity [𝐶/𝐺𝑉𝑚]: 𝛽22 = −0.073, 𝛽33 = −0.077. 

The following data have been used in the numerical simulations:  

𝑐𝜈 = 107 𝑁 𝑚2⁄ , 𝑔 = 0.1 𝑚,  𝑘𝑒 = 1, 𝛿 =  10−7𝑚, 𝜑𝑓 = −64 𝑉. 
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Numerical solution of a piezoelectric contact problem (Y. Ouafik) 

 

Figure 1. Physical setting 

The deformed configuration of the body is represented in Figure 2 (left), which corresponds to the numerical 

solution of problem  𝑃𝑉. In order to compare the deformed mesh related to Problem 𝑃𝑉  with that obtained for 

the numerical solution of Problem 𝑃𝑉𝛿
, we plotted in Figure 2 (right) the deformed configuration for the 

numerical solution of the regularized problem 𝑃𝑉𝛿
. The numerical solution presented in figure 2 corresponds 

to a meshsize ℎ = 1/16: the spatial domain is discretized into 1536 triangular elements with 48 contact 

elements. 

 

 

  

Figure 2. Amplified deformed mesh: the original contact problem (left) and the regularized problem (right) 

 

 

  

Figure 3.  Electric potential: the original contact problem (left) and the regularized problem (right) 

In Figure 3, the electric potential is plotted on the deformed configuration. These simulations describe the 

inverse piezoelectric effect, i.e. the appearance of strain in the body, due to the action of the electric field. Also, 

they underline the effects of the electrical conductivity of the foundation on the process. The reverse effect is 

used in actuators: a piezoelectric actuator can be produced to protect materials already in contact; this in order 

not to exceed the voltage thresholds specified by the manufacturer. According to the Figures 2 and 3, we 

observe that the numerical results obtained for the solution of Problem  𝑃𝑉 are very well approximated by the 

solution of Problem 𝑃𝑉𝛿
. Next, we lead a parametric study according to the regularized coefficient  𝛿. To this 

end, in Figure 4 we study the convergence on the whole discrete domain Ωℎ of the displacement and the electric 

potential solutions obtained for Problem 𝑃𝑉𝛿
 towards that obtained for Problem 𝑃𝑉. Here, we consider the 

numerical estimation of the difference ||𝒖𝛿
ℎ − 𝒖ℎ|| + ||𝜑𝛿

𝒉 − 𝜑𝒉|| between the numerical solutions obtained 

for Problems 𝑃𝑉 and 𝑃𝑉𝛿
. The results depicted in Figure 4 illustrate that the solution of the regularized problem 
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gives a reliable and accurate approximation of the original problem, provided that the regularization parameter 

takes very small values. 

 

Figure 4. Convergence result 

 

5. CONCLUSION 

In this paper, piezoelectric contact is numerically studied.  The novelties arise in the fact that an electro-elastic 

constitutive law describes the material behavior and the foundation is electrically conductive. A discrete 

scheme was used to approach the problem and a numerical algorithm, which combines the penalized approach 

with the Newton method, was implemented. Moreover, numerical simulation results are reported on a two-

dimensional test problem. These simulations provide a reliable comparison between numerical solutions of the 

regularized problem and the original one. In addition to the mathematical interest in the convergence result 

shown in Figure 4, it is important from the mechanical point of view since is shows that the solution of the 

contact problem can be approached by the solution of a regularized contact problem as the regularization 

parameter converges to zero. Performing these simulations, we found that the numerical solution worked well 

and the convergence was rapid. This work opens the way to study further models of frictional contact with 

other conditions for thermally-electrically conductive foundation taking into the account the heat exchange 

condition.   
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