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             With modern technologies, most devices such as electric vehicles are 

powered by lithium batteries. This kind of battery is advantageous to other 
types of batteries, such as higher energy density, reliability, etc. to work 
effectively, it is necessary to handle them using a battery management 
system BMS, which guarantees their safety and optimizes their performances 
in normal conditions. One of the things that a BMS must do is to estimate the 
state of charge SOC of the battery because it is the most critical indicator of 
battery state. This task is very challenging because the lithium-ion battery is 
a highly time-invariant, nonlinear, and complex electrochemical system. In 

this paper, we present a cell model that can be used in the state of the charge 
estimation process. This model is based on an electrical approach where we 
build an electrical circuit that has the same behavior as the real cell, this 
approach is called the Equivalent circuit model ECM. using a set of 
laboratory data, we will determine the model parameters using multiple 
techniques. Those parameters will be used in process of estimating the state 
of charge and other internal parameters.    
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1. INTRODUCTION  

The battery system is the most important energy storage source in electric vehicles (EVs) [1]. These 
days, the development trend in the field of electric vehicles is the use of high-capacity lithium-ion batteries as 

a battery energy storage system [2]. This kind of battery presents multiple benefits such as high-power 

density, lightweight, long life, and thermal stability. 

To prolong the lifetime and increase the safety of these batteries, it is essential to monitor their state of charge 

in real-time. This task is performed by battery management systems that control, optimize and protect the 

battery.  One of the main tasks of a battery management system is to estimate the number of fundamental 

quantities, such as the state of charge SOC of the cell, the state of health SOH of the cell battery, available 

power, and available energy. The best methods to produce these estimates require models that describe the 

dynamic behavior of the cell with precision.  

Since the SOC cannot be measured directly, many approaches have been proposed to estimate the 

SOC of the battery [3–6]. One of those approaches is called model-based estimation of the state of charge, 
this approach is widely used in the application for its high accuracy and self-corrective ability [7–9]. One of 

the cell models that can be used to perform such an operation, is the equivalent circuit model ECM.  

ECMs represent the operation of a lithium-ion cell by providing an electrical circuit, which behaves 

the same as cells. Data collected from cells via laboratory tests are used to optimize the parameter values of 
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the proposed circuit elements so that the current and voltage behaviors of the model match exactly those of 

the real cell. [10]  

In the rest of this paper, we adopt the equivalent circuit model approach, where we build the model circuit 

element by element, starting with an explanation of the observed dominant behavior. Any difference between 

the model predictions and the observed behavior of the cells is therefore considered to be a modeling error. 

Each time, the reduction in the resulting error will be corrected by adding more elements to the circuit, until 

only a small level of error remains, where we are satisfied with the resulting model. 

 

2. LITHIUM-ION CELL MODELLING 

 Open circuit voltage OCV 

We begin the cell modeling by explaining the most observed behavior of the battery cell. This model, 

figure (1), presents the cell as an ideal voltage source v(t). Indeed, the cell delivers a voltage to its terminals. 

This voltage is measured by a voltmeter, where we notice that it is constant, and is not a function of the 

current flowing in the load connected to the cell. This model is simple and it’s very different from the reality 

where OCV depends on the cell state of charge. 

   
Figure 1. Cell ideal model diagram where open circuit voltage 

has a constant value. 

 State of charge effect on OCV 

The first improvement that we make to the simple cell model is due to the difference in voltages in a cell 

with different states of charge. Indeed, we notice that the cell voltage at equilibrium or the OCV of a fully 

charged cell is greater than the OCV of a fully discharged cell. 

The improved cell model, Figure (2), includes OCV dependence on the state of charge of the cell. The 

ideal voltage source is replaced by a controlled voltage source, which has a value equal to OCV (z (t)), where 

z(t) is the state of charge of the cell. If we take into account the dependence of the OCV on temperature, we 

use the notation OCV (z (t), T (t)), where T (t) is the internal temperature of the cell as a function of time. 

 
Figure 2. Cell model diagram including OCV dependence on 

the state of charge. 

We can model the state of charge changes using the following differential equation: 

  ( )

  
   

 ( ) ( )

 
  ( )  

where z (t) represents the state of charge, η (t) the Coulomb efficiency or the charging efficiency, Q the 

total capacity. When the cell is being discharged, the current i(t) is positive and η(t) takes the value of 1, 

which leads to the decrease of z (t). On the other hand, z (t) increases at the charge of the cell where the 

current is negative and the Coulomb efficiency is η (t) ≤1.  
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By integrating the equation (1) between time t0 and t and if we assume that the current is constant over 

the sampling interval, then we have: 

 ( )    (  )  
 

 
∫  ( ) ( )  
 

  

 ( )  

This equation must be written in discrete-time so we can use it in numerical calculus. To do so, let t0 = 

k∆t et t = (k + 1) ∆t. so: 

  ((   )  )   (   )  
  

 
 (   ) (   ) ( )  

Finally: 

 [   ]  [ ]  
  

 
 [ ] [ ] ( )  

 Equivalent series resistance 

The first observation we notice is that when the cell powers an external load, the voltage across its 

terminals drops below the open-circuit voltage OCV (z(t)), and when the cell is being charged, the voltage at 

these terminals rises above the open circuit voltage OCV (z (t)). This phenomenon can be explained by 

placing a resistor in series with the voltage source. The new model is shown in the diagram in figure (3). The 

resistance added to the diagram represents what is called the equivalent series resistance (ESR) of the cell. 

The reason we choose this circuit over others is that the behavior observed in this case is similar to the 

response of the chosen circuit, where the voltage v(t) drops than OCV(z(t)) due to the presence of the resistor 

R0. 

 

Figure 3. Cell model diagram including the equivalent series 

resistance. 
In the new model, the state of charge equation remains unchanged. However, we add a second equation 

to the model which describes the voltage across the circuit. 

 In continuous time: 

  ( )     ( ( ))   ( )   ( )  

In discrete time  

 [ ]     ( [ ])   [ ]   ( )  

 Polarization effect 

Polarization in the cell refers to any deviation between the voltage across the cell from the open-circuit 

voltage OCV(z(t)), due to current flow through the cell. In the equivalent circuit model that we have 

developed so far, we have modeled the instantaneous bias via the term i (t) × R0. Real cells have more 

complex behavior, where the voltage bias increases slowly over time when current is demanded from the cell, 

and then slowly decreases over time when the cell is allowed to rest.  
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This phenomenon is caused by the slow diffusion processes of lithium in a lithium-ion cell, this slowly 

changing voltage is called, the diffusion voltage. Its effect can be approximated in a circuit by using one or 

more resistor-capacitor sub-circuits in parallel. Figure (4). 

 

Figure 4. Cell model diagram including the polarization effect. 

 

In this model, the state of charge equation remains the same as before, but the voltage equation changes: 

In continuous time: 

  ( )     ( ( ))     ( )       ( ) ( )  

In discrete time: 

  [ ]     ( [ ])     [ ]       [ ] ( )  

To find the current flowing in resistor R1, we write the expression for the total current: 

 ( )       ( )        ̇ ( )  ( )  

We replace    ̇ ( ) by 
   (   ( ) )

  
, we get the following differential equation 

    ( )

  
   

 

    
   ( )  

 

    
 ( )  (  )  

By converting this equation from continuous-time to discrete-time, we get:  

   [   ]     (
   

    
)    [ ]  (     (

   

    
)) [ ]    (  )  

 Warburg impedance effect  

The Warburg impedance models the diffusion of lithium ions in the electrodes. It depends on the 

frequency, modeled as ZW = AW/j where the constant AW is called the Warburg coefficient, and ω is the 

applied frequency in radians per second. 

There is no simple differential equation to model Warburg's impedance. However, its effect can be 

estimated via several resistor-capacitor networks in series, using two distinct structures which are, the Cauer 

structure and the Foster structure. 

 Cauer's structure 

Warburg impedance is represented by RC subcircuits as shown in figure (5) 

`
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+
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Figure 5. Cauer's structure diagram 

 

 Foster structure 

In this case the impedance is only a set of RC circuits parallel in series as in figure (6): 

 

Figure 6. Foster's structure diagram 

 Hysteresis Effect  

The model we have developed so far, implies that the voltage drop across R0 will immediately drop to 

zero when the cell current is zero, and the voltage drop across capacitor C1, will decrease to zero over time 

by discharging to resistor R1. In other words, the voltage across the cell will converge to the open circuit 

voltage OCV (z (t)).  

However, the reality is something else. The cell voltage decreases to a slightly different value from the 

OCV, and the difference depends on the previous use of the cell. For example, we notice that if we discharge 

a cell at 50% SOC, and we leave it at rest, then the equilibrium voltage is lower than the OCV. On the 

contrary, if we charge a cell with 50% SOC, and we leave it at rest, then the equilibrium voltage is higher 

than the OCV. These observations indicate that there is a voltage hysteresis across the cell. 

The hysteresis voltages are different from the diffusion voltage, the diffusion voltages change over time, 

on the other hand, the hysteresis voltages only change when the SOC changes. In addition, the hysteresis 

voltages are not directly related to time. This is because if a cell is allowed to rest, the diffusion voltages will 

decrease to zero, but the hysteresis voltages will not change at all. 

There are two types of hysteresis, the first is the dynamic hysteresis which depends on the state of charge 

SOC, the other is the instantaneous hysteresis which results when the sign of the current changes (for 

example, the current change from cell discharge mode to cell charge mode). 

 Dynamic hysteresis 

Let hD(z,t) be the dynamic hysteresis voltage as a function of SOC and time. The variation of this voltage 

as a function of the state of charge is described by the following differential equation: 

    (   )

  
     ( ̇)( (   ̇)   (   ))  (  )  

With: 

 (   ̇) : Is a function which gives the maximum polarization due to the hysteresis as a function of SOC 

(z) and of the rate of change of SOC( ̇). 

The term  (   ̇)   (   ): indicates that the rate of change of the hysteresis voltage is proportional to 

the distance of the current hysteresis value from the main hysteresis loop. 
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The term γ, is a positive constant that regulates the rate of decay. 

The term    ( ̇) forces equation (12) to be stable for both charge and discharge of the cell. 

To fit the differential equation of hD(z, t) in our model, it must be a differential equation with respect to 

time, and not with respect to SOC. And this is done by multiplying both sides of the equation by 
  

  
 : 

    (   )

  

  

  
     ( ̇)( (   ̇)    (   ))

  

  
  (  )     

By replacing with: 

{
 

 
  

  
  

 ( ) ( )

 
  

  
   ( ̇)   | ̇|

  

then we get the equation in continuous time: 

    (  )

  
  |

  ( ) ( )

 
|  ( )  |

  ( ) ( )

 
| (   ̇)  (  )  

By converting this equation into discrete time:  

  [   ]     ( |
  [ ] [ ]  

 
|)  [ ]  (     ( |

  [ ] [ ]  

 
|))   (  )  

have  (   ̇)       ( [ ]), and since   [ ] it is in volts, and      [ ]   . It is useful to 

rewrite the equation in an equivalent representation but slightly different, which has a unitless hysteresis state 

−1 ≤ hD[k] ≤ 1 

  [   ]     ( |
  [ ] [ ]  

 
|)  [ ]  (     ( |

  [ ] [ ]  

 
|))    ( [ ])     (  ) 

Finally, the dynamic hysteresis is modeled as: 

Dynamic hysteresis voltage      [ ] 

 Instantaneous hysteresis 

In addition to dynamic hysteresis which changes when SOC changes, we will model the instantaneous 

hysteresis voltage which changes when the sign of the current changes.  

  [ ]  {
   ( [ ]) | [ ]|    

           [   ]           
  (  )  

Finally, the instantaneous hysteresis is modeled as: 

Instantaneous hysteresis voltage         [ ] 

In total, the overall hysteresis is: 

      [ ]       [ ] 

 Enhanced self-correcting the cell model 

The Enhanced Self-Correcting (ESC) cell model combines all the elements already mentioned. The 

model is called Enhanced because it includes a description of the hysteresis, unlike some earlier models. The 

model is called self-correcting because the predicted terminal voltage of the model converges to the OCV 

plus the hysteresis when the cell is at rest, and converges to the OCV plus the hysteresis minus all resistive 

voltages at constant current. The final diagram of this model is shown in figure (7), which shows an example 
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with a single resistor-capacitor pair in parallel. To compact the notation, we define a resistor-capacitor 

subcircuit speed factor          ( 
  

    
) 

  [     ]  [
     
     
   

]
⏟        

   

  [ ]  [
    
    
 

]
⏟    

   

 [ ] (  )
 

So, if we define  

  [ ]     ( |
  [ ] [ ]  

 
|)    

therefore, we will have the dynamic aspects of the model described by the following relation: 

[
 [   ]

  [   ]

 [   ]
]   [

   
     

    [ ]
] [
 [ ]

  [ ]

 [ ]
]   

[
 
 
  
 [ ]  

 
 

    

 (  [ ]   )]
 
 
 

[
 [ ]

   ( [ ])
] (  )  

This is the equation of state of the ESC model. The output equation of the model is: 

 [ ]     ( [ ]  [ ])      [ ]     [ ]  ∑     [ ]     [ ] 
 

 (  )  

3. DETERMINING THE PARAMETERS OF THE CELL MODEL (ESC) 

The model that we built describe two aspect of the cell, the first is static aspect of the cell, and the 

second is the dynamic aspect.  

For the static aspect of the cell, this one is represented by open circuit voltage as a function of the state 

of charge, while another performance of the cell is dynamic. So, to determine the cell parameters. We do two 

kinds of experiments, the first one is where we determine the static aspect of the cell, here we charge and 

discharge the cell with a current almost equal to zero to minimize the excitation of the dynamic aspect of the 

cell. The second one is where we determine the dynamic aspect. 

The data collected in the first experience are voltage values and ampere-hours charged and discharged in 

every step at different temperatures. 

 Determining the Coulombic efficiency 

The Coulombic efficiency at 25oC : 

 (   )  
                                                  

                                               
 

The coulombic efficiency at temperature different than 25oC: 

                ( )  
                   

                                  
     (   )

 
                                         

                                     
   

 *AH : Ampere-heurs  
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 Determining of the relationship OCV versus SOC 

Using the data collected from the experience, we will determine the relationship between OCV and SOC. 

However, the relationship that we will obtain is an approximate relationship, and that because the charge 

voltage and discharge voltage are different. So, in the high state of charge, we are forced to base OCV 

estimate on the discharge voltage values because we don’t have any charge voltage information. While in the 

low states of charge we are forced to base the OCV estimate on the charge voltage values because we don’t 

have discharge voltage information. In the intermediate state of charge, we can base OCV estimate on both 

charge and discharge values.        

 

Figure 7. Open circuit voltage of the cell model based on data 

collected of discharge and charge OCV 

This figure represents the approximate OCV/SOC relationship for a cell at room temperature. The black 

line is the approximate OCV, and the blue line is the discharge voltage curve, while the red line is the charge 

voltage curve. As we see, at high state of charge values, the OCV estimate is based on the discharge curve, 

while in the low state of charge, the OCV estimate is based on the charge voltage curve. In the intermediate 

states of charge, the OCV estimate is based on the two curves. The method used here to determine the 

OCV/SOC relationship at room temperature, is also used to determine it at all other temperatures of the 

experience. 

 Determining the dynamic parameters 

Once we find the cell’s OCV relationship, then we try to find the dynamic parameters of the cell model. 

This time, the cell must be exercised with profiles of current versus time that are representative of the final 

application of the resulting model.  

Voltage values, current values, temperature values, ampere-hours charged, and ampere-hours discharged 

are recorded every second during the experience. These data are used to identify the cell model dynamic 

parameters. These parameters are; resistor value R1 and capacitor value R1 in the subcircuit, equivalent series 

resistor    , hysteresis parameters    and   , hysteresis rate constant   . Some of these parameters cannot be 

computed directly from the measured data, instead, we have to use an optimization approach, which we call 

system identification.    

The simple way to do this is to choose a set of parameter values, the second step is to simulate the ESC 

model using that set of parameter values with the same input current as was measured during the experience, 

the third step is to compare the ESC model voltage prediction with the measured voltages, the fourth step is 

to modify the parameter values to improve the model prediction and go back to the second step and start 

again from there until the optimization is considered complete. 
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One approach used to determine the parameters of the cell model is to use an optimization toolbox such 

as MathWorks Simulink Design Optimization Toolbox. To do so, we must create a block diagram to 

implement the cell model equations. Figure (8) shows the implementation of ESC model in Simulink. For 

implementation we assume a model circuit with two parallel resistor–capacitor circuits η = 1, γ = 3600, and 

M0 = 0. 

 

Figure 8. Block diagram of the Simulink Design Optimization 

Toolbox 

This toolbox automatically generates values for cell capacitance, resistor-capacitor time constants, 

resistance values, and maximum hysteresis value, then runs the model to see how well the voltage predictions 

match the measured data. If there was a difference between the estimation and the measured data, we update 

parameter’s estimates, and repeats until it converges to a solution. 

This method gives good results quickly if we initiate the parameter’s value with good guesses. To do so, 

we try to compute directly some parameters values. 

 Direct computation of M, M0, R0, and Rj  

The first thing to do before we go through the computation of the parameters, is to find the time constant 

of the resistor-capacitor circuits. Actually, the way to this is simple by using a method called system 

identification.  

If we take a look at the output equation of the model, we will see that there are known parts such the 

   ( [ ]  [ ]) ,and unknown parts which are the rest of the equation. We can rewrite equation 20 to 

distinguish known parts from unknown parts.    [ ] can be computed directly from the current profile. To 

compute    [ ] we require   . For now, let’s assume that we know its value.    [ ]   can be computed once 

know the resistor-capacitor time constant. 

 ̃[ ]   [ ]     ( [ ]  [ ])                         (  )  

                    [ ]     [ ]       [ ]    [ ]   
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The variables    [ ]   [ ]    [ ]  [ ] are input variables to equation (21). And the parameter’s values 

can be computed as follows: 

 ̃[ ]⏟
 

 [  [ ]     [ ]   [ ]       [ ]]⏟                
 

[

  
 
  
  

]

⏟
 

 

We can find the unknown parameters vector via the least-square solution. 

 Optimization of    

to find the parameters of the cell model, we assume that we know the value of    in fact its value is 

unknown. So, we have to optimize it, to do that, we must bound it in some range, and then compute the 

quality of the fit for models optimized for each γ in this range, keeping only the model that offers the best 

quality of the fit. 

4. CELL MODEL SIMULATION AND DISCUSSION  

To give a better idea of the capabilities of our ESC model, we present some modeling results in this 

section. Data was collected from a 25 Ah automotive battery cell, and the open circuit voltage and dynamic 

modeling parameters were estimated from the data (using one sub-resistance-capacitor circuit in the model). 

Here, we focus on simulating the optimized model, where we compare its predictions with the voltage data 

measured for a test performed at 25 ◦C. 

Figure 9 shows an overlay of the true voltage (blue line) and model predicted voltage (Orange line) over 

the entire 10-hour test. As we see in this figure there is fitness between measured voltage and predicted 

voltage. The root-mean-square difference between the actual results and the model results was 15.86 mV in 

this case. These results show more clearly that the circuit model captures cell performance quite well. As we 

see in figure 10, the error of the modeling is slightly small, the range of the error is between negative 0.1 and 

positve 0.1, this error depends on founded parameters values, but if somehow, we get a better value of those 

parameters this error will eventually decrease.    

 

 

Figure 9. Cell measured voltage and cell model estimated  

voltage simulation versus time  
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Figure 10. Error of the simulation versus time       

 

Figures 11 show the optimized parameter values for this cell based on the test temperature (tests were 

performed from -25◦C to 45◦C in 10◦C increments).  

 

 
Figure 11-a  Figure 11-b: 

Figure 11-c 

 

 
Figure 11-d 
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Figure 11-e Figure 11-f  

Figure 11-a shows serie resistance R0 evolution as function of temperature. the equivalent series 

resistance R0 decreases exponentially as the temperature increases. It is almost a universal result.  

Figure 11-b shows the resistance (in resistance-capacitor subcircuit) evolution as a function of 

temperature. The resistor-capacitor resistances Rj tend to decrease exponentially as the temperature increases. 

This is also expected. 

Figure 11-c shows the resistance-capacitor time constant evolution as a function of temperature. The 

resistor–capacitor time constants tend to increase with temperature increase. This might actually seem a 

surprising result, as we would expect the cell dynamics to speed up at warmer temperatures. 

Figures (11-d, 11-e, 11-f) shows the hysteresis parameters evolution as a function of temperature and 

hysteresis time constant evolution as function of temperature. The Hysteresis is generally “speeding up” (i.e., 

a smaller change in SOC is required to effect a large change in the hysteresis state) and decreasing in 

magnitude as temperature increases. Hysteresis levels generally decrease as temperature increases. 

In contrast to other cell models such as mathematical models, electrochemical models, thermal models, 

this model is intuitive and easy to impliment. This model uses only passive components such as resistors and 

capacitors and a voltage source, which they are suitable for use in circuit simulators.  The accuracy of 

prediction and estimation achievable with this model is sufficient for many applications.  

5. CONCLUSION  

In this paper we built our model (ESC) using an electric analogy, our model can describe the behavior of 

the cell. Using a set of data collected from an application of the cell, we simulated our model and we 

compared the predicted voltage and measured voltage and we did find that our model predicts terminal 

voltage very well. The error of the modeling depends on the parameter’s values of the cell model and the 

measured data.    
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