
  

 

 

 295 

  

Journal homepage: https://ijeap.org/ 

International Journal of Engineering and Applied Physics (IJEAP) 

Vol. 1, No. 3, September 2021, pp. 295~305 

ISSN: 2737-8071 

Measurement the effects of temperature and fiber orientation 

on vibration of functionally graded beam 
 

 

Farzan Barati*, Mona Esfandiari, Sajad Babaei, Amirhossein barati, Zahra Hoseini-Tabar, Aida 

Atarod  

Department of mechanics, Hamedan Branch, Islamic Azad University, Hamadan, Iran 

 

 

 

Article Info  ABSTRACT  

Article history: 

Received Aug 1, 2021 

Revised   Sep 18, 2021 

Accepted Sep 20, 2021 

 

 
This paper concerned with analytical approach to study the thermal vibration 

of fiber orientation functionally graded (FOFG) beam, that fibers`oriented 

angles are variable and graded in the thickness direction of the beam. Uniform 

thermal distribution considered in the entire beam and properties of fiber 

orientation functionally graded (FOFG) beam considered as the temperature-

dependent element. Symmetrical, asymmetrical, and classical distribution 

types for the mode of fiber angle presented in the thickness direction of the 

beam continuously.  Equilibrium Equations derived from first- order shear 

deformation theory and Hamilton principle. Simply supported boundary 

condition is considered for both edges of the beam.Eneralized differential 

quadrature method usedto solve the system of coupled differential Equations. 

To study accuracy of the present analysis, a compression carried out with a 

known data. The results shows that different parameters such as thickness to 

radius ratio, effect of temperature variations, model of fibers angle variations 

and power-law index affected on the natural frequencies. 
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1. INTRODUCTION  

Composite or FGM beams characterized by continuous or discontinuous, uniaxially or spatially variable 

material properties [1]. Tanigawa [2] has compiled comprehensive lists of papers on the analytical models of 

the thermoplasticbehavior of FGMs.Chenaet. al [3] studied the energy flow analysis (EFA) method developed 

to predict the high frequency response of beams in a thermal environment. Vibration and thermal buckling 

behavior of sandwich beams with composite facings and viscoelastic core presented [4]. Hui-Shen 

Shen[5]studiedthelarge amplitude vibration, nonlinear bending and thermal postbuckling of functionally 

graded material (FGM) beams resting on an elastic foundation in thermal environments.A new kind of higher 

order shear deformation theory  for functionally graded materials that explicitly couples the micro structural 

and macro structural effects expanded by Aboudi et al.[6] , Benatta et al. [7] and Sallai et al. [8] solved static 

bending deformations of simply supported FGM hybrid beams subjected to uniformly distributed transverse 
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loads analytically by using a higher-order shear deformation theory and gave numerical results for the 

deflection, and the transverse normal and the transverse shear stresses. 

Kadoli et al. [9] by using the finite element method and the third-order shear deformation theory (TSDT) an 

analysed static bending deformation of FGM beams with different boundary conditions (BCs) at the edges and 

a uniform transverse load applied on the top surface. Li [10] studied static bending deformations and transverse 

vibrations of FGM Timoshenko beams and introduced a function to uncouple governing Equations for the 

deflection and the angle of rotation of a cross-section initially perpendicular to the neutral surface. Employing 

the same method, Huang and Li [11,12] analysed bending, buckling and free vibrations of FGM circular 

columns with material properties continuously varying in the radial direction by FSDT.Simsek [13] studied 

free vibrations of FGM beams using different higher-order shear deformation theories and derived governing 

Equations by using Hamilton’s principle. Ke et al. [14,15] as well as Yang and Chen [16] studied free 

vibrations, buckling and post-buckling of FGM TBs containing open cracks by assuming an exponential 

variation of material properties in the thickness direction. Sankar [17] used the linear elasticity theory to 

analytically analyse deformations of simply supported FGM beams with Young’s modulus varying 

exponentially in the thickness direction and subjected to symmetrical sinusoidal transverse loads. Pradhan 

andMurmu [18] studied Thermomechanical vibration analysis of functionally graded beams and functionally 

graded sandwich beams by considering the functionally graded material beams to be resting on variable (i) 

Winkler foundation and (ii) two-parameter elastic foundation and varying the material properties of these 

beams in the thickness direction. The governing differential Equations for beam vibration using the modified 

differential quadrature method. 

Mostapha Raki et al.[19]analysed the thermal buckling of thin rectangular FGM plate. Considering thematerial 

properties vary as a power form of the thickness coordinate variable z and using the variational method . 

The free vibration analysis of initially stressed thick simply supported functionally graded curved panel resting 

on two-parameter elastic foundation, subjected in thermal environment studied using the three-dimensional 

elasticity formulation by Farid et al. [20].  

In this paper, Effects of fiber orientation and thermal on the natural frequencies of a functionally graded fiber 

beam (FOFG) with distributions of fiber orientation investigated. Continuously subjected to the uniform 

temperature distribution through the beam.Properties of the reinforced fiber oriented beam ,which changes in 

the form of fiber orientation angle, are considered temperature dependent and independent .And, it`s effects on 

the results compared with each other. The temperature obtained from equilibrium Equations by presuming the 

thermal strains in the form of pre-stress terms, and the effect of these pre-stresses on the governing Equations 

of motionwhich are derived  by the FSD theory are considered.For obtaining the pre-stresses and also, the 

Equation of motions are solved by DQM method.The thermal vibration analysis performed in two stages: 

Initially, the stresses induced by the temperature increase in beam obtained, then these stresses imported as 

pre-stress in Equations of motion, and it caused the changes in natural frequencies of FOFG beam, 

finally.According to the shortage of conducted studies and papers about the thermal vibrationson the beam 

geometry and with these special properties of the used material, the procedure of extraction and solving the 

Equations on this geometry, performed by a special method here. 

 

2. RESEARCH METHOD  

2.1. Equations Of Equlibrium  

Displacement field explained based on Equation. (3) : 

(3) 

( , , ) ( , ) ( , )

0

( , , ) ( , )

= −

=

=

U x z t u x t z x t

V

W x z t w x t

 

Stress- strain relation in plane stress for an orthotropic material based on Equation. (4), whichthe thermal strains 

applied in it are as follows: 

          (4) 

11 12 16

12 22 26

16 26 66

( )

2

  

  

  

      
      

= −       
      
      

x x x

z z z

xz xz xz

Q Q Q

Q Q Q T

Q Q Q

 

In this Equation, T is the temperature variations of beam, ( , , ) =
i

i x y z thermal expansion factor and 
ijQ  

coefficients ofreduced stiffness matrix.  

Coefficients of reduced stiffness matrixrelated tothe fibers angle position in each point of orthotropic material 

as Eq. (5) 
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(5) 
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Where: 

3. 

                   

1 12 2 2
11 12 22 66 12

12 21 12 21 12 21

, , , ,
1 1 1

= = = =
− − −

E v E E
Q Q Q Q G

v v v v v v

 
The thermal expansion coefficients along the various geometrical directions based on Equation. (6) depended 

on the position of fibers angle and thermal expansion coefficients along the main directions. 

(6) 

2 2

1 2

2 2

1 2

1 2

cos sin

sin cos

( )sin cos

    

    
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= +
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= −

x

z

xy

 

The strain relation in displacement is as Equation. (7) 

(7) 
0 0, 

  
= = +
  

x xz

U U W

x z x
 

Stress elements in displacements obtained by substituting the Eq. (3) into (7), and then in Eq. (4). Finally, 

equilibrium Equations by using the Hamilton`s principle obtained as Equation. (8) in resultant forces and 

moments. 

(8) 

0

0

0







= =


= =


= − + =


x

x

x
x

dN
u

x

dV
w

x

dM
V

x

 

Although, the various governing boundary conditions at both ends of FOFG beam such as simplyin resultants 

obtained as Equations (9) from Hamilton principle. 

Simply  

 

 

boundary condition(S): 

By substituting resultants in displacements u, φ, w, which are unknown, inEquations. (8-9), 

equilibriumEquations and boundary conditions will obtained. 

The DQM numerical method used to solve the couple differential Equation system in displacement variants. 

By applying this method to equilibrium Equations and boundary conditions, it reached to Equations.10-11. 

(9) 0, 0, 0= = =x xw N M  
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    (10) 

(2) (2) (2) (1)

11 11 44 44

1 1 1 1
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1 1
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= =

+ −
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4. Simply boundary condition (S-BC): 

(11) 

(1) (1) (1)

11 11 44 44 11 22 44

1 1 1

(1) (1) (1)

11 11 44 44 11 22 44

1 1 1

0

( ( ) ( ) 2 ( )) 0
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= = =

=
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5. In the presented Equations it defined the thermal terms appeared in the main Equations and 

boundary conditions. By solving this Equation and obtaining the variables of wu ,, it can be possible to 

obtain the created stresses in the FOFG beam caused by variations of temperature based on Eq. (12) Which in 

these displacement Equations 1 1 1, ,u w are the obtained values from equilibrium, and it is clear the 

displacement is zero when the beam is in the environment temperature 0=T and final the initial stress or 

the pre-stress will create and is equal to zero.These stresses will created and increased by the increase of the 

temperature. 

(12) 

1 1 1
1

0 11 12 16

1 1 1
1

0 16 26 66

( ) ( ) ( 2 )

( ) ( ) ( 2 )


    


    

  
= − −  −  − − + 

  

  
= − −  −  − − + 

  

x x z xz

xz x z xz

u w
Q z T Q T Q T

x x x

u w
Q z T Q T Q T

x x x

 

2.2.Equation Of Motion  

Now through the second stage, whichEquations of motion obtained by considering the created pre-stresses due 

to temperature, and investigating the effects of these pre-stresses on natural frequencies of beam. 

Based on introducing Hamilton`s principle as Eq. (17), K and U are the kinematic and potential energies, 

respectively, which includes explained xzx 00 ,  pre-stresses in Eq. (16).
 

(13) 

2

1

0 0

( )

( )

[( ) ( ) ]

 

 
 

      

−

   
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   
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





t

t

V

x x x xz xz xz

V

K U dt

u u w w
K dV

t t t t

U dV

 

Despitethe existence of linear and nonlinearterms,introduced as Eq. (14). 

(14) 

2 2 21
[( ) ( ) ( ) ]

2




   
= + + +
   

       
= + + + +
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x

xz

U U V W

x x x x

U W U U V V W W

z x x z x z x z

 

By substitution of Eq. (3) in Eq. (14), then in Eq. (4), and finally in Eq. (13), the governing Equations of motion 

and various boundary conditions on both two ends of FOFG beam with existence of pre-stresses. Forces and 

momentums as presented in Equations (19 to 22). 
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(15) 
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For Simply Supported(S): 

(16) 
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Presented resultants in Eqs. (8 to 11), and (15-16) introduced as Eqs. (17) 

(17) 
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As like the first stage, Equations of motion and the total boundary conditionsin Equations. (15-16) obtained in 

displacement fields as wu ,, , and by substituting Equations. (18) instead of displacement parameters it will 

reach to a couple differential Equationin wu ,,  variables which solved by DQM method. 

(18) 

0

0

0

( , ) ( )

( , ) ( )

( , ) ( )





 

=

=

=

i t
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x t x e

 

Where ω are natural frequencies in above Equations. 

2.3 DQM Discretized From Of The Governing Equations  

 

The final Equations by applying DQM method obtained as Equations. (19 - 21) 

(19) 
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Also, boundary Equations obtained as Equations. (22) 
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The presented coefficients in Equations. (10 - 11) and (19- 23) introduced as Equations. (24) 
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3. Results And Discussions 

To validate the obtained Equations and considered numerical method, a comparison between the previous 

papers in this case performed. 

The effective Young modulus of the shell assumed to vary as a power law of the thickness coordinate. 

Properties of considered ceramic, metal and function of FGM presented as: 

(25) 

1
( ) ( )( )

2
= − + +n

m c c

z
E z E E E

h
 

70 , 0.3

380 , 0.3

= =

= =

m m

c c

E GPa v

E GPa v
 

In Table. (1) the first and fifth frequencies of isotropic FGM beam, with simply-simply boundary condition in 

different length to thickness ratio, and various volume fraction powers, which obtained from the current 

method, compared the presented results with reference ( Aydogdu and Taskin, 2007). 

 

7. 

Table  1  comparison between first and fifth non-dimensional frequencies of FG beam with 

simply-simply boundary condition 

 

 

 

 

 

 

 

 

 

 

The results inTables.1 are shown that there is a great likeness between the present and the previous obtained 

results. 

Figure.1 illustrates the effect of fiber angle`s positioning inorthotropic material. In this Figure the non-

dimensional first natural frequency for an one-layer orthotropic beam with a fibersorientation throughout the 

thickness of the beam is illustrated. In addition to affect of fibers angle, effect of temperature increases on the 

non-dimensional first natural frequency illustrated.  
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Figure 1variations of the non-dimensional first natural frequency versus one -layer homogenous 

orthotropic beam`s fibers angle.  , L/h=10) 

m

m

Eh

L  2

=

0=T

L/h  Theory   Power law index (n)   

    0 0.1 1 2 10 

5  [21] 6.563 6.237 4.652 4.101 3.563 

  Present 6.5632 6.2372 4.6533 4.1025 3.5610 

  [21] 91.163 87.019 65.946 57.423 46.716 

  Present 91.1632 87.2006 66.7216 58.2700 47.2857 

20  [21] 6.931 6.580 4.895 4.323 3.791 

  Present 6.9313 6.5808 4.8950 4.3234 3.7914 

  [21] 159.347 151.495 113.17 99.677 86.089 

  Present 159.3449 151.5012 113.2002 99.7117 86.1200 

1

5

1

5
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The results in Fig. 1 are shown that the non-dimensional first natural frequency of one-layer orthotropic beam 

decreases up to 900, which in this angle the minimum natural frequency viewed. On the other hand, the natural 

frequency in all boundary conditions and every temperature is symmetrical toward 900 angle. For example, the 

frequencies are equal in 600 and 1200 or 400 and 1400 because of being symmetric toward 90degrees angle. 

Another point is the decrease of natural frequency in all governing boundary conditions because of temperature 

increase, whatever the fiber angle is closer to 90 degrees, the difference between the natural frequency of a 

determined angle in various temperatures will be lesser. The minimum difference between natural frequencies 

in different temperatures occurs at 90 degrees, and the maximum in 0 and 180 degrees.  

Figure.2 showsthe variations of non-dimensional natural frequency in different powers from Equations. (1) and 

(2) for symmetric, asymmetric, and classic distributions of fibers orientationcontinuously in FOFG beam. The 

non-dimensional natural frequency increases by increasing the power low index. Symmetrical and 

asymmetrical distributions have the highest and the lowestnon-dimensional natural frequencies respectively in 

all boundary conditions. The results of three distributions are equal in higher ranges of power, and the variations 

of non-dimensional natural frequencies are infinitesimal toward power. 
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Figure 2. the first natural frequency`s variations versus power for FOFG beam with different fibers 

angle positioning distributions. ΔT = 0, L/h=10) 

 

Figure.3 illustrates the variations of the non-dimensional first natural frequency in temperature increase for 

different distributions and boundary conditions of FOFG beam. Affects of dependence or independence of 

properties toward temperature is the case which studied more than the mentioned parameters. This Figure, 

showdecrease of natural frequency per increase of temperature in 0-800 K range.The non- dimensional natural 

frequency decrease is infinitesimal when the properties considered temperature independent,but there is a 

noticeable decrease in natural frequency when properties are temperature dependent. The difference in natural 

frequency in the cases where properties are temperature dependent or independent is lower and higher in lower 

and higher temperatures, respectfully. As like Figure.3, below Figureindicates the symmetrical and 

asymmetrical distributions have highest and lowest natural frequencies in- order. 
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Figure 3. variations of non-dimensional first natural frequency versus smooth increase of temperature 

for different distributions of fibers orientation, and temperature dependent and independent properties. 

L/h=10 

In Figure.4, variations of the non-dimensional first natural frequency in terms of length to thickness ratio per 

even powers which related to the symmetrical distribution and different boundary conditions are shown. In all 

boundary conditions, increase of length to thickness ratio and power leads to increase of natural frequency. 

Variations of natural frequency toward length to thickness ratio are impalpable for small values of constant 

powers which clearly observed in Figures .4. The variations are higher and more considerable by power 

increase.  
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Figure 4. variations of the first natural frequency versus of length to thickness for FOFG beam per 

symmetrical distribution and different even powersΔT=0) 

In Tables.2 first three non-dimensional natural frequencies of FOFG beam presented for three Classical, 

symmetrical, and asymmetrical distributions of fibers orientation in thickness direction per different 
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temperatures. Although, the non-dimensional first natural frequency of FOFG beam presented for the two 

temperatures 200 and 4000K , distribution of fibers angle and powers low index,in order in Tables.3. 

Table2 non-dimensional first three natural frequencies of FOFG beam with classical distribution (n=1) of 

fibers orientation, (L/h=20) 

           

BCs  0 100 200 300 400 500 600 700 800 

classical 

 5.1771

08 

5.1006

96 

5.0223

59 

4.9417

53 

4.8587

32 

4.7731

33 

4.6800

49 

4.5918

39 

4.4954

34 

 20.435

93 

20.135

03 

19.826

7 

19.509

18 

19.182

31 

18.845

36 

18.487

4 

18.132

12 

17.753

13 

 45.017

9 

44.358

14 

43.681

66 

42.986

15 

42.269

98 

41.531

19 

40.744

92 

39.969

89 

39.140

26 

symmetri

cal 

 6.5484

34 

6.4007

72 

6.2496

01 

6.0947

07 

5.9357

02 

5.7722

14 

5.6043

5 

5.4309

85 

5.2515

77 

 25.856

66 

25.274

73 

24.679

02 

24.068

61 

23.442

11 

22.798

13 

22.136

34 

21.453

35 

20.747

09 

 56.987

53 

55.709

71 

54.401

67 

53.061

4 

51.685

91 

50.272

16 

48.819

19 

47.319

92 

45.769

79 

asymmetr

ical 

 3.4222

28 

3.3838

58 

3.3439

97 

3.3048

91 

3.2642

74 

3.2226

58 

3.1810

73 

3.1371

41 

3.0950

68 

 13.605

26 

13.451

37 

13.291

82 

13.134

46 

12.971

8 

12.805

63 

12.638

68 

12.464

48 

12.294

02 

 30.306

95 

29.960

97 

29.605

82 

29.251

13 

28.887

08 

28.515

73 

28.140

61 

27.752

57 

27.366

2 

 

Table3 non-dimensional first natural frequencies of FOFG beam with different distributions of fibers 

orientation, (L/h=20, ΔT=200K) 

ΔT=200K ΔT=400K n Models 

8.0479 7.6145 4 

Symmetric 8.8907 8.4027 6 

9.3729 8.8553 8 

5.8493 5.6098 3 

Asymmetric 7.4310 7.0815 5 

8.3499 7.9341 7 

5.7450 5.5295 2 

Classic 7.2239 6.8962 4 

8.5429 8.1142 7 

 

4. CONCLUSION  

In this paper, thermal vibration of the orthotropic beam reinforced withfibers investigated in which fibers angle 

changes functionally and continuously in thickness direction. Three models for variations of fibers angle along 

the thickness of the beam is considered. In this literature, the uniformly assumed temperature affect on the 

beam, different types of fibers angle and geometrical parameters investigated.The Equations ofmotion obtained 

and solved based on first order theory and differential quadrature method, respectively.  

-Increase of power in all three classical, symmetrical and asymmetrical distributions leads to increase of non-

dimensional natural frequency andthe natural frequency is constant and inclines to the natural frequency of 

orthotropic one - layer beam per higher powers 

-Symmetrical and asymmetrical distributions have in-order the highest and the lowest frequency for the three 

considered distributions of fibers angle variation in thickness direction which the difference in natural 

frequencies for these three distributions is higher in lower powers, and it gets lower by increasing the 

powers.And finally,it inclines to the natural frequency of orthotropic one- layer beam. 

The non-dimensional natural frequencies decrease by increasing the temperature throughout the FOFG 

beam,and the case gets closer to its real status when the properties of beam considered temperature dependent. 
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In temperature dependent properties manner, the further decrease occurs in natural frequencyand its values will 

be less than the temperature independent properties manner. Quantitative difference between the natural 

frequencies of two temperature dependent and independent properties state is greater in the higher 

temperatures. This is true about all boundary conditions and those three types of distribution fibers angle. 

Increase of length to thickness ratio leads natural frequency`s increase which the greater constant powers create 

greater natural frequency modifications per variations of length to thickness ratio. 
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