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 In this article, the bending behaviors of functionally graded porous (FGP) 

beams are determined associated with uniform load. The simple beam theory 

is carried out with various boundary conditions. Two types of porosity are 

also applied to study the influences of material properties on bending 

behaviors. The results obtained in this article are presented and compared 

with other results in the references to verify the correctness in implementing 

the formula and writing the Matlab code. Last but not least, this article can 

help researchers to have an overview of the bending characteristics of the 

functionally graded porous beams. 
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1. INTRODUCTION 

In the last few decades, functionally graded material has become one of the smart materials and it is 

widely used in industry. The idea is to produce a smart material by changing the micro structure with a 

specific gradient from one material to another material. This enables the material to have the best behavior of 

both materials. If it is for thermal, or corrosive resistance or malleability and toughness, both strengths of the 

material may be used to avoid troubles related to above issues [1-5]. Due to the wide application of smart 

materials, various studies have been conducted on the mechanical behavior of structures as [6-14]. However, 

this material can exhibit some deficiencies such as porosity during the manufacturing process [15, 16]. So, 

for a good knowledge of porosity effect on mechanical behavior of FG structures, a study related to this issue 

must be added soon. Among three kinds of structure like beam, plate and shell, beam has always considered 

the interests of researchers because of its applications. There are many different beam theories used to 

analyze beam structures like simple beam theory [17, 18], classical beam theory [19, 20], first-order shear 

deformation theory [21, 22] or higher-order shear deformation theory [23-25]. However, using a simple 

model helps us to reduce the computational cost with the resulting error within the allowable range. 

Furthermore, beams made of functionally graded materials with existing porosity should be studied as much 

as possible to help the designer have a correct view of the mechanical properties. Indeed, the few published 

papers on bending static behavior of FGP beams are presented. Atmane et al. presented bending, free 
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vibration and buckling responses of FGP beams resting on elastic foundations via an efficient quasi-3D 

theory [26]. Souhir et al. explore the influence of porosity on bending static analysis of functionally graded 

(FG) beams using a refined mixed finite element beam model [27], Jouneghani et al. [28] investigated the 

mechanical behavior of FGP nanobeams and subjected to a hygro-thermo-mechanical loading., etc. From 

above reasons, this article is given to investigate the bending behavior of functionally graded porous beams 

respectively.  

This article has four sections. Sect. 1 gives the introduction as above. Sect. 2 presents the 

formulations as well as Sect. 3 shows some essential results. Finally, a few comments are also given in Sect. 

4 respectively 

 

2. FORMULATIONS 

A FGP beam of length L, width b and thickness t is studied. It is made by continuously changing 

from ceramic to metal phases through the thickness direction. The volume fraction Vm of metal phase follows 

a power-law distribution which can be written as 
n

m

z
V = + 0.5

h

 
 
 

 (1) 

m
V V

c
1+ =  (2) 

where z is the coordinate in the thickness direction and n is called as the power-law index. 

Due to actual problems in the fabrication process, porosities may appear as an imperfection in the FG beams 

leading hence to two types of porosity, namely even and uneven distributions as shown in Figure 1. The 

effective material properties of the FGP beam are determined using the modified rule of mixture in which the 

porosity volume fraction, α, 0≤α<1, affects averagely the material volume fraction of each constituent 
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It can be mentioned that for even-type the porosity phases are uniformly distributed along the beam cross 

section whereas for uneven-type, the porosity phases are spreading mostly around the middle surface of the 

beam cross section and vanish in the top and bottom surfaces.  
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Even porosity Uneven porosity

 

Figure 1. Functionally graded porous beam with two types of porosity 

 

Based on finite element method (FEM), the degrees of freedom associated with a node of a beam 

element are a transverse displacement and a rotation as depicted in Figure 2. This transverse displacement 

can be written  

= + + +
i i j je v i i v j jv N v N N v N    (5) 

in which 
2 3

2 3

3 2
1= − +

iv

e e

x x
N

L L
 (6) 

2 3

2

2
= − +

i

e e

x x
N x

L L
  (7) 

2 3

2 3

3 2
= −

jv

e e

x x
N

L L
 (8) 



                ISSN: 2737-8071 

 Int J Eng & App Phy, Vol. 1, No. 3, September 2021:  226 - 234 

228 

2 3

2
= − +

j

e e

x x
N

L L
  (9) 

 Using the principles of simple beam theory, the beam element stiffness matrix will be derived  
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According to the principle of minimum total potential energy, the element equation can be described as 
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After assembly, the bending parameters can be obtained by solving the following equation  
Kd = F  (12) 
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Figure 2. The simple beam element 

 

Four boundary conditions can also be listed here with subscripts ‘C’, ‘S’ and ‘F’ refer to the clamped, simply 

supported and free condition respectively 

 

(SS) (0) = (L) = 0v v  (13) 

(CS) (0) = = 0(0)v θ , (L) = 0v  (14) 

(CC) (0) = = 0(0)v θ ,  (L) = = 0(L)v θ  (15) 

(CF) (0) = = 0(0)v θ  (16) 

To be more specific, the finite element system of equations can be reached as below 

• Input data 

                      Geometric data and material properties 

• Calculating constitutive matrix 

• Loop over elements 

                      Calculating element stiffness matrix 

                      Calculating element force vector  

• Assembling the element stiffness matrix and force vector in the global coordinate system 

• Applying boundary conditions 

• Solving equation for bending analysis 

• Display deflections and rotations at nodes.  

 

3. RESULTS AND DISCUSSIONS 

In this section, as a first step, the validity of the proposed model is checked for (SS) FGP beams 

under a uniform load q = 106 N/m2. The structure is made of Aluminium/Alumina composite (Al/Al2O3) 

with the following material properties as in Table 1. The transverse displacement at position L/2 can be 

normalized by 

3

m

4

E L
=100 ( )

2qL

t
v v . The values of above parameters for FGP beams with L/t = 5, three values 
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of porosity coefficient α and n=2 are presented in Table 2 and compared with others beam theories by 

Atmane at al. [26] or Souhir et al. [27]. 

 

Table 1. The material properties 
(Al2O3 / Al) 

Ec = 380 x 109 Pa, c = 0.3,  

c = 3960 kg/m3, 

Em = 70 x 109 Pa, m = 0.3,  

m = 2702 kg/m3 

 

Table 2. The comparison of the normalized transverse displacements at position x= L/2  

of (SS) FGP beams with L/t = 5, n=2 and α = 0, 0.1 & 0.2  

α 
Souhir et al. 

[27] 

Atmane et al. 

[26] 

    Present 

 

0 5.20 5.35 5.35 

0.1 5.82 6.22 6.06 

0.2 6.63 7.38 6.98 

 

A good agreement is disclosed between the results which indicates the feasibility of the present model in the 

prediction of bending behavior of FGP beams. The relative error among above results can be explained by 

the different beam theories used in all studies.   

In the next step, the influences on the transverse displacement V = ( = 0 L)→v x  and rotation angle θ along 

the length of FGP beams from the change of boundary conditions CC, CS & CF with two types of porosity 

are depicted in Figures 3-8.  

 

 

 
Figure 3. The change of transverse displacement and rotation along the length of FGP (CC) beams  

with α = 0.1, even porosity and n = 0, 5 & 100.  
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Figure 4. The change of transverse displacement and rotation along the length of FGP (CC) beams  

with α = 0.1, uneven porosity and n = 0, 5 & 100.  

  

 
Figure 5. The change of transverse displacement and rotation along the length of FGP (CS) beams  

with α = 0.1, even porosity and n = 0, 5 & 100.  
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Figure 6. The change of transverse displacement and rotation along the length of FGP (CS) beams  

with α = 0.1, uneven porosity and n = 0, 5 & 100.  

 
Figure 7. The change of transverse displacement and rotation along the length of FGP (CF) beams  

with α = 0.1, even porosity and n = 0, 5 & 100.  
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Figure 8. The change of transverse displacement and rotation along the length of FGP (CF) beams  

with α = 0.1, uneven porosity and n = 0, 5 & 100.  

       
Figure 9. The normalized transverse displacement of FGP (CF) beams with various values of α,  

even porosity and n = 0, 5 & 100.  
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Figure 10. The normalized transverse displacement of FGP (CF) beams with various values of α,  

uneven porosity and n = 0, 5 & 100.  

 

With n = 0, the deflection and rotation angle of FGP beams are the smallest for all cases. This can be 

explained by the full ceramic properties of the material. Moreover, by changing the porosity coefficient α 

from 0 to 0.3, the results of the normalized transverse displacement = (L / 2)
1

t
v v  of FGP beams with (CF) 

boundary condition are plotted in Figure 9 and 10 for two even and uneven types of porosity. As the porosity 

value increases, the deflection of FGP beam also increases and this statement holds for all values of n, 

respectively. 

 

 

4. CONCLUSION 

In this work, author presents the bending behaviors of functionally graded porous (FGP) beams 

under four different types of boundary condition and two kinds of porosity. The results of this paper are 

good, agree well with others in references. Although the topic and approach of the paper are not new, the 

main aim of the author is to affirm the applicability of the simple beam theory to analyze the functionally 

graded porous (FGP) beams with acceptable results 
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