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We pointed out that a quadratic Liénard-type equation, when 
appropriately interpreted, exhibited branching behavior as a 
consequence of the double-valued nature of its governing 
Hamiltonian. Under a suitable approximation involving the 
coupling constant, we derived the corresponding quantum 
mechanical model, characterized by a momentum-dependent 
effective mass function. 
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1 Introduction 
 
The exploration of non-conventional Hamiltonians, particularly those exhibiting( (𝒫𝒥) symmetric schemes 
[1], has garnered significant interest due to their applicability in various domains such as nonlinear dynamics, 
shallow water-wave phenomena, and quantum mechanical models, including their relativistic extensions [2]. 
Branched Hamiltonians [3, 4, 5] represent a fascinating and non-conventional area within mathematical 
physics, arising from Lagrangians with non-convex velocity dependencies. These systems lead to multi-valued 
Hamiltonians, introducing complex phasespace structures and topological considerations. Branched 
Hamiltonians, characterized by their multivalued dependence on momentum, present intriguing challenges, 
and opportunities in both classical and quantum mechanics. These systems arise from Lagrangians with non-
convex velocity dependencies, leading to complex phasespace structures and necessitating a revaluation of 
traditional quantization, have been recently proposed by Shapere and Wilczek [3, 4, 5] and is currently an area 
of active interest as evidenced in a series of papers by Curtright and Zachos [6, 7, 8, 9, 10, 11] and other works 
[12, 13, 14]. It ought to be mentioned that in a broader methodical framework the traditional approaches often 
do not work that well: indeed, their applicability is challenged by various innovative theoretical motivations. 
Just to name a few, the growth of popularity of the detailed study of certain non-real, complex potentials with 
real spectra or, most recently, of their friendly and tractable non-local generalizations [15]. 
An interesting trend has emerged that addresses different types of non-linear interactions which are mediated, 
say, by a set of dynamical parameters that are energy dependent [16]. This could be carried out by the dynamical 
interpaly of the role from the guiding potential of the system to for instance varying mass characterization [17] 
etc. Recent works have especially focused attention [5] to elementary classical models and succeeded, in some 



               ISSN: 2737-8071 

Int J Eng & App Phy, Vol. 5, No. 3, September 2025:  1241 - 1246 

1242

cases, in the construction of their quantum counterparts. In this context we can speak of partner Hamiltonians 
of supersymmetric quantum mechanics paired by supercharges inducing an isospectral system in a momentum 
space framework. Although the potential appears in the Lagrangian in the conventional subtracted way, when 
one switches to the momentum space one inevitably encounters the harmonic oscillator. We have explored the 
possibility of modifications by connecting to nonlinear models that admit a Hamiltonian representation. In 
regard we should mention that local branching is not so sufficient to ensure integrability. In fact, an integrable 
differential equation having solutions that are not locally finitely branched with a finitely sheeted Riemann 
surface but not yet identified through Painlevé analysis, is in itself an interesting open problem [7]. 
In the present work, we have searched for situations where multi-valued Hamiltonians occur that result from 
the enforcement of the Legendre transform on the non-standard Lagrangians in the sense that the velocity 
dependence is not convex. Early works by Curtright and Zachos [7, 8, 9, 10, 11, 12] and by Bagchi et al. [18] 
pointed out that multi-valued Hamiltonians arose in the continuous interpolation of discrete time dynamical 
systems that invariable had an underlying chaotic behaviour. The natural framework of study would then be a 
quasi-Hamiltonian formalism. In our approach we constructed systems where a simple generic Lagrangian toy 
model led to multiple-valued Hamiltonian systems. It was observed that such Hamiltonians would almost 
always be defined in the momentum space revealing systems with a momentum-dependent mass function. The 
underlying Hamiltonians show interesting supersymmetric analogies. We also expect that such systems would 
exhibit chaotic behaviour thus making the connection to dynamical systems very transparent. In the context of 
nonlinear systems, the Liénard class presents an intriguing feature of the Hamiltonian in that it depicts a system 
in which the roles of the position and momentum variables are exchanged. In [8] two eligible elementary 
nonlinear models were proposed which admitted a feasible quantization. Liénard equation represents a cubic 
oscillator subject to a damped nonlinear force. Naturally, the presence of the damping poses to be a problem 
whenever one tries to contemplate a quantization of the model. Liénard systems are of potential importance 
not only in optics [9] but also in the shallow water-wave studies [10] and in non-Hermitian quantum mechanics 
[13]. Due to nonlinearity one of the main obstacles lies in the absence of superposition principle. However, it 
is important to realize that the quantization is hard to tackle in the coordinate representation of the Schrödinger 
equation but can be straightforwardly carried out in the momentum space. Such a Hamiltonian, which has the 
feature of being a branched type, may be interpreted to represent a momentum-dependent effective mass 
quantum system. While the complementary quantum problem of the position-dependent mass has received 
considerable attention due to its relevance in describing the dynamics of electrons in problems of 
compositionally graded crystals, quantum dots and liquid crystals, interest in momentum-dependent mass 
problems is a somewhat recent curiosity [13] arising from the observation that the PT- symmetric Liénard type 
nonlinear oscillator can afford complete solvability in a momentum space description. Bagchi and his 
collaborators [18] explored certain classes of branched Hamiltonians for the well-known class of nonlinear 
autonomous differential equations that are of Liénard type [19, 20, 21]. 
 
2 Branched Hamiltonians: A brief review 
 
Let us discuss the example of a branched system as illustrated in [7]. It is to be noted here that a typical classical 
model of the above-mentioned non-quadratic type may be sampled by Lagrangian 

𝐿 = 𝐶(𝑣 − 1)
ଶ௞ିଵ
ଶ௞ାଵ − 𝑉(𝑥),  where  𝐶 =

2𝑘 + 1

2𝑘 − 1
൬

1

4
൰

ଶ
ଶ௞ାଵ

(1) 

Function 𝑉(𝑥) represents a convenient local interaction potential while the traditional kinetic-energy term is 
tentatively replaced by a fairly unusual function of "velocity" 𝑣. 
This model was recently analyzed in Ref. [7] where the definition of the fractional powers of difference 𝑣 − 1 
was adapted to the needs of possible phenomenology. In detail, the (2𝑘 + 1)-st root was required real and 
positive or negative for 𝑣 > 1 or 𝑣 < 1, respectively. By doing this we are in fact taking the real parts of two 
different branches of the analytic (2𝑘 + 1)-st root as a function of complex 𝑣. We do this solely to have a real, 
single-valued Lagrangian function for all real 𝑣. 
Under the circumstances, there is every reason to draw on more than one branch of an analytic function of 𝑣 
provided that only one branch is encountered at any given real 𝑣, or at least that would seem to be true for 
classical dynamics. The following graph, will illustrate the consequences this choice for 𝐿 has for the quantum 
dynamics is, especially for the case 𝑘 = 1. 
If we expand the above Lagrangian for the case 𝑘 = 1 by Taylor's series for 𝑣 near zero, we then have 

 𝐿 ≈ 𝐶 ቆ−1 +
௩

ଷ
+

௩మ

ଽ
+ 𝑂(𝑣ଷ)ቇ − 𝑉(𝑥). Of these terms, the first  
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                                                Figure 1: 𝐿 + 𝑉 = 𝐶(𝑣 − 1)
భ

య for the case 𝑘 = 1. 
 
is naive, the second would give a boundary contribution to the action and therefore not effect the equations of 
motion, and the third is the usual 𝑣ଶ kinetic structure: 

𝐴 = න  
௧మ

௧భ

 𝐿𝑑𝑡 

≈ 𝐶(𝑡ଶ − 𝑡ଵ +
1

3
൫𝑥(𝑡ଶ) − 𝑥(𝑡ଵ)൯ +

1

9
න  

௧మ

௧భ

vଶ𝑑𝑡 + න O( 
௧మ

௧భ

vଷ)𝑑𝑡) − න  
௧మ

௧భ

𝑉(𝑥)𝑑𝑥                                               (2) 

 
So, this action would result in the usual Newtonian classical equations of motion for small 𝑣. On the other 
hand, for large velocities, the 𝑣 dependence is more elaborate, leading (for finite, positive integer 𝑘 ) to a non-
convex function of velocity, whose curvature 𝜕ଶ𝐿/𝜕𝑣ଶ flips sign at just one point, namely, 𝑣 = 1. 
Thus, the function 𝐿 may be thought of a single pair of convex functions judiciously pieced together. The non-
convexity of 𝐿 has the effect of making the Kinetic energy, and hence the Hamiltonian, a double-valued 
function of 𝑝. 
In the case of the Lagrangian (1), the canonical momentum turns out to be 

𝑝 = ൬
1

4
൰

ଶ
ଶ௞ାଵ 1

(𝑣 − 1)
ଶ

ଶ௞ାଵ

(3) 

whose inversion immediately tells us that the velocity variable 𝑣(𝑝) is a double-valued function of 𝑝. 

𝑣±(𝑝) = 1 ∓
1

4
ቆ

1

ඥ𝑝
ቇ

(ଶ௞ାଵ)

(4) 

This has the implication that if we evaluate the Hamiltonian its branches 𝐻±will appear and hence the 
Hamiltonian, a double-valued function of 𝑝. For any positive integer 𝑘, we find two branches for 𝐻, 

𝐻± = 𝑝 ±
1

4𝑘 − 2
ቆ

1

ඥ𝑝
ቇ

ଶ௞ିଵ

+ 𝑉(𝑥) (5) 

For 𝑘 = 1, the two kinetic energy branches have the shape shown in the figure below. Note that, classically, 𝑝 

must be non-negative for this model to avoid imaginary 𝑣(𝑝). That is to say, the slope 
డ௅

డ௩
 is always positive. 
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                             Figure 2: 𝐻± − 𝑉(𝑥) = 𝑝 ±

ଵ

ଶ√௣
 in blue/green. There is a cusp at 𝑝 = ∞. 

 
We also note that 𝑘 = 1 case speaks of the canonical supersymmetric structure   for the difference 𝐻± − 𝑉(𝑥) 

namely, 𝑝 ±
ଵ

ଶ√௣
, but in the momentum space if viewed as a quantum mechanical system. The spectral and 

boundary condition linkages of these Hamiltonian are not difficult to set up. 
 
3 Branched Hamiltonians for Liénard type systems 
 
Initial efforts to identify branched Hamiltonians within the framework of nonlinear differential equations 
focused on the linear subclass of models of the type Liénard [9]. In this work, we extend the analysis to explore 
the presence of branched Hamiltonians in a broader class of nonlinear, autonomous Liénard-type differential 
equations. Such systems are of considerable relevance in various physical contexts, including nonlinear optics, 
shallow water wave phenomena, and non-Hermitian quantum mechanics. A significant challenge posed by the 
inherent nonlinearity of these equations is the breakdown of the superposition principle, which complicates 
analytical treatment and solution construction. 
The class of Liénard equations is represented by 

𝑥̈ + 𝑔(𝑥)𝑥̇ + ℎ(𝑥) = 0, (6) 
where an overdot indicates a derivative with respect to the time (𝑡) variable while 𝑔(𝑥) and ℎ(𝑥) are two 
continuously differentiable functions of the spatial coordinate 𝑥. 
We concentrate on the model of Mathews and Lakshmanan [21] which looks at the case wherein 𝑔(𝑥) = 𝑘𝑥 

and ℎ(𝑥) = 𝜆𝑥 +
௞మ

ଽ
𝑥ଷ (these are odd functions of 𝑥 ) and which yields the equation of motion 

𝑥̈ + 𝑘𝑥𝑥̇ +
𝑘ଶ

9
𝑥ଷ + 𝜆𝑥 = 0, 𝑘𝜆 > 0. (7) 

representing a cubic oscillator subject to a damped nonlinear force as indicated by the product term 𝑘𝑥𝑥̇. This 
equation is appealing in that it can be seen to follow from a Lagrangian as provided by the precise form 

𝐿 =
27𝜆ଷ

2𝑘ଶ ቆ𝑘𝑥̇ +
𝑘ଶ𝑥ଶ

3
+ 3𝜆ቇ

ିଵ

+
3𝜆𝑥̇

2𝑘
−

9𝜆ଶ

2𝑘ଶ
. (8) 

After some straightforward manipulations the corresponding Hamiltonian 𝐻 can also be written down 

𝐻(௫,௣) =
9𝜆ଶ

2𝑘ଶ
ቈ2 − 2 ൬1 −

2𝑘𝑝

3𝜆
൰

ଵ/ଶ

+
𝑘ଶ𝑥ଶ

9𝜆
−

2𝑘𝑝

3𝜆
−

2𝑘ଷ𝑥ଶ𝑝

27𝜆ଶ
቉ . (9) 

One can see that 𝐻 is of non-standard type: the coordinate and momentum are mixed so that the Hamiltonian 
cannot be written as the sum of individual kinetic and potential energy terms. 
The Lagrangian (8), however, is not unique in producing the Hamiltonian 𝐻(௫,௣) as was pointed out in [9]. 
Towards this end Bagchi et al. [9] considered an entirely different form 
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𝐿(𝑥, 𝑣) = 𝐶(𝑣 + 𝑓(𝑥))
ଶ௠ାଵ
ଶ௠ିଵ − 𝛿,  where  𝐶 =

1 − 2𝑚

1 + 2𝑚
𝛿

ଶ
ଵିଶ௠ (10) 

 
where 𝑣 is the velocity variable, 𝑓(𝑥) is an arbitrary smooth function, 𝑚 is a nonnegative integer and 𝛿 is some 
suitable constant quantity. The motivation for such a form came from the model of Curtright and Zachos [7] 
who were interested in seeking some concrete examples of branched Hamiltonians. The present one of (10) 
differs from it in the presence of additional distinguishing features in the form of an inverse exponent in the 
first term and the inclusion of a general function term 𝑓(𝑥). Since 𝐿 inevitably leads to multiple values for 𝑝, 
the resulting system possesses a branched structure 

𝐻±(𝑥, 𝑝) = (−𝑝)𝑓(𝑥) −
2𝛿

2𝑚 + 1
(±ඥ−𝑝)ଶ௠ାଵ + 𝛿 (11) 

Quite interestingly, for the specific case of 𝑚 = 0, 𝐻±reduce to 

𝐻± = (−𝑝)𝑓(𝑥) ∓ 2𝛿ඥ−𝑝 + 𝛿 (12) 
When one defines 𝑓(𝑥) and 𝛿 as 

𝑓(𝑥) =
𝜆

2
𝑥ଶ +

9𝜆ଶ

2𝑘ଶ
, 𝛿 =

9𝜆ଶ

2𝑘ଶ
(13) 

then with the trivial shift 𝑝 →
ଶ௞

ଷఒ
𝑝 − 1, we get 

𝐻± =
9𝜆ଶ

2𝑘ଶ
ቈ2 ∓ 2 ൬1 −

2𝑘𝑝

3𝜆
൰

ଵ/ଶ

+
𝑘ଶ𝑥ଶ

9𝜆
−

2𝑘𝑝

3𝜆
−

2𝑘ଷ𝑥ଶ𝑝

27𝜆ଶ
቉ (14) 

Evidently, the positive branch corresponds to the form of 𝐻(௫,௣) in (8) while both 𝐻±reveal the presence of a 
linear harmonic potential in the limit 𝑘 → 0. The pair Hamiltonians above speak of branching in the momentum 

space as 𝑝 deviates from the value 
ଷఒ

ଶ௞
. 

 
4 Quantization 
 
Quantization of the branched system (14) can be handled in a typical way as detailed in [22], i.e., by adopting 
a suitable ordering procedure and implementing appropriate boundary conditions. The Hamiltonian (14) is of 
non-standard type. The co-ordinates and potentials are mixed so that the expression cannot be split into 
individual kinetic and potential energy terms. However, we can write 

𝐻(௫,௣) =
1

2
𝑓(𝑝)𝑥ଶ + 𝑈(𝑝), (15) 

where 

𝑓(𝑝) = 𝜔ଶ ൬1 −
2𝑘𝑝

3𝜔ଶ൰ , 𝑈(𝑝) =
9𝜔ସ

2𝑘ଶ ቌඨ1 −
2𝑘𝑝

3𝜔ଶ
− 1ቍ

ଶ

, (16) 

 
with 𝜔 = √𝜆. The roles of coordinate and momentum have been transposed implying a momentum-dependent 
system at play. The first term in (16) represents a mixed function of both position and momentum variables 
while the second term is a function of momentum alone. The classical Hamiltonian 𝐻(௫,௣) is invariant under a 
joint action of coordinate reflection and time reversal transformation. Exact quantization of the Hamiltonian 

can be carried out by going over to the momentum space with 𝑥̂ = 𝑖ℏ
డ

డ௣
. The Hamiltonian turns out to be of 

momentumdependent mass type. Adopting a von Roos strategy of quantizing the problem by considering a 
general symmetric ordering [23], the underlying Schrodinger equation can be formulated and solved, in 
principle at least. 
 
 
 
5 Summary 
 
In this study, we examined a nonlinear oscillator model exhibiting quasi-harmonic oscillations and 
demonstrated that its corresponding Hamiltonian possesses a nonconventional, double-valued structure, arising 
from a velocity-dependent potential. For small values of the coupling parameter, we showed that the system 
admits a quantum mechanical interpretation, effectively describing a particle with a momentumdependent 
effective mass. 
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