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 The aim of the present work was to study the effects of uniform 
horizontal magnetic field and Hall currents on the double-diffusive 
convection in couple-stress fluid through permeable media. 
Following the linearized stability theory, Boussinesq approximation 
and normal mode analysis, the dispersion relation is obtained. The 
stationary convection, stability of the system and oscillatory modes 
are discussed. For the case of stationary convection, the stable solute 
gradient and magnetic field postpones the onset of convection while 
the Hall currents hasten the onset of convection. The medium 
permeability and couple-stress both postpone and hasten the onset of 
convection depending on the Hall parameter M. The stable solute 
gradient and the magnetic field (and corresponding Hall currents) are 
found to introduce oscillatory modes in the system, which were non-
existent in their absence. The sufficient conditions for the non-
existence of overstability are also obtained 
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1. INTRODUCTION  

The theoretical and experimental results of the onset of thermal instability (Bénard 
convection) in a fluid layer under varying assumptions of hydrodynamics and 
hydromagnetics has been treated in detail by [1] in his celebrated monograph. The problem 
of thermohaline convection in a layer of fluid heated from below and subjected to a stable 
salinity gradient has been considered [2]. Physics is quite similar in the stellar case in that 
helium acts like salt in raising the density and in diffusing more slowly than heat. The 
conditions under which convective motions are important in stellar atmospheres are 
usually far removed from consideration of a single component fluid and rigid boundaries, 
and therefore it is desirable to consider a fluid acted on by a solute gradient and free 
boundaries. The problem of the onset of thermal instability in the presence of a solute 
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gradient is of great importance because of its applications to atmospheric physics and 
astrophysics, especially in the case of the ionosphere and the outer layer of the atmosphere. 
The thermosolutal convection problems also arise in oceanography, limnology and 
engineering. [3] did the pioneering work regarding the investigation of thermosolutal 
convection. This work was elaborated in different physical situations [4, 5].  A double–
diffusive instability that occurs when a solution of a slowly diffusing protein is layered 
over a denser solution of more rapidly diffusing sucrose This instability, which is 
deleterious to certain biochemical separations, can be suppressed by rotation in the ultra 
centrifuge [7].  
The study of a layer of fluid heated from below in porous media is motivated both 
theoretically and by its practical applications in engineering. Among the applications in 
engineering disciplines one can find the food process industry, chemical process industry, 
solidification and centrifugal casting of metals. The development of geothermal power 
resources has increased general interest in the properties of convection in porous medium. 
The formation and derivation of the basic equations of a layer of a fluid heated from below 
in porous medium, using Boussinesq approximation, has been given in [8]. When a fluid 
permeates an isotropic and homogeneous porous medium, the gross effect is represented 
by the Darcy’s law. An extensive and updated account of convection in porous media has 
been given [9]. The forced convection in fluid saturated porous medium channel has been 
studied by [10]. The free convection heat transfer of alumina-water nanofluid in a square 
cavity is simulated, employing the finite volume technique [11]. The flow of a non-
Newtonian power-law fluid with viscous dissipation through a pipe with a variable expand 
ration studied in [12] and investigated the influence of the power law index, expand ratio, 
Darcy number and Brinkman number on heat transfer and thermodynamics irreversibility. 
The effect of a magnetic field on the stability of such a flow is of interest in geophysics, 
particularly in the study of the earth’s core, where the earth’s mantle, which consists of 
conducting fluid, behaves like a porous medium that can become convectively unstable as 
a result of differential diffusion. Another application of the results of flow through a 
porous medium in the presence of a magnetic field is in the study of the stability of 
convective geothermal flow. MHD finds vital applications n MHD generators, MHD flow-
meters and pumps for pumping liquid metals in metallurgy, geophysics, MHD couplers 
and bearings and physiological processes such as magnetic therapy. 

The theory of couple-stress fluid has been formulated by [13]. One of the 
applications of couple-stress fluid is its use to the study of the mechanisms of lubrications 
of synovial joints, which has become the object of scientific research. A human joint is a 
dynamically loaded bearing which has articular cartilage as the bearing and synovial fluid 
as the lubricant. When a fluid is generated, squeeze-film action is capable of providing 
considerable protection to the cartilage surface. The shoulder, ankle, knee and hip joints 
are the loaded–bearing synovial joints of the human body and these joints have a low 
friction coefficient and negligible wear. Normal synovial fluid is a viscous, non-Newtonian 
fluid and is generally clear or yellowish. According to the theory of [13], couple-stresses 
appear in noticeable magnitudes in fluids with very large molecules. 

Many of the flow problems in fluids with couple-stresses, discussed by Stokes, 
indicate some possible experiments, which could be used for determining the material 
constants, and the results are found to differ from those of Newtonian fluid. Couple-
stresses are found to appear in noticeable magnitudes in polymer solutions for force and 
couple-stresses. This theory is developed in an effort to examine the simplest 
generalization of the classical theory, which would allow polar effects. The constitutive 
equations proposed by [13] are: 
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, V,   and  ,  ,  ,  , are 

stress tensor, symmetric part of ,Tij  anti-symmetric part of ,Tij  the couple-stress tensor, 

deformation tensor, the vorticity tensor, the vorticity vector, body couple, the alternating 
unit tensor, velocity field, the density and material constants respectively. The dimensions 
of   and   are those of viscosity whereas the dimensions of   and   are those of 
momentum.  
          Since the long chain hyaluronic acid molecules are found as additives in synovial 
fluids, [14] modeled the synovial fluid as a couple-stress fluid. The synovial fluid is the 
natural lubricant of joints of the vertebrates. The detailed description of the joint 
lubrication has very important practical implications. Practically all diseases of joints are 
caused by or connected with a malfunction of the lubrication. The efficiency of the 
physiological joint lubrication is caused by several mechanisms. The synovial fluid is, due 
to its content of the hyaluronic acid, a fluid of high viscosity, near to a gel. The 
hydromagnetic stability of an unbounded couple-stress binary fluid mixture under rotation 
with vertical temperature and concentration gradients has been studied [15]. A couple-
stress fluid with suspended particles heated from below has been investigated [16] and 
have found that for stationary convection, couple-stress has a stabilizing effect whereas 
suspended particles have a destabilizing effect. In another study, [17] have considered a 
couple stress fluid heated from below in a porous medium in the presence of a magnetic 
field and rotation. The thermal instability of a layer of a couple–stress fluid acted on by a 
uniform rotation has been considered [18], and have found that for stationary convection, 
the rotation has a stabilizing effect whereas couple-stress has both stabilizing and 
destabilizing effects.  
 The problems of couple-stress fluid heated from below in porous medium in 
presence of magnetic field and rotation, separately, have been studied [19, 20]. The Hall 
effect is likely to be important in many geophysical situations as well as in flow of 
laboratory plasma. There is growing importance of non-Newtonian fluids in chemical 
technology, industry and geophysical fluid dynamics. The Hall currents have relevance and 
importance in geophysics, MHD generator and industry. 
              Keeping in mind the importance of non-Newtonian fluids, convection in fluid 
layer heated and soluted from below, porous medium, magnetic field and Hall currents, the 
present paper attempts to study the couple-stress fluid heated and soluted from below in 
porous medium in the presence of uniform horizontal magnetic field to include the effect 
of Hall currents. The study is motivated by a model of synovial fluid. The synovial fluid is 
the natural lubricant of joints of the vertebrates. The detailed description of the joint 
lubrication has very important practical implications-practically all diseases of joints are 
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caused by or connected with a malfunction of the lubrication. The extremal efficiency of 
the physiological joint lubrication is caused by more mechanisms. The synovial fluid is due 
to the content of the hyaluronic acid a fluid of high viscosity, near to a gel. A layer of such 
fluid heated and soluted from below in porous medium under the action of magnetic field 
may find applications in physiological processes e.g. MHD finds applications in 
physiological processes such as magnetic therapy; heating may find applications in physio-
therapy.  
 
2. STRUCTURE OF THE PROBLEM AND BASIC EQUATIONS  
Consider an infinite, horizontal, incompressible, electrically conducting couple-stress fluid 
layer of thickness 𝑑, heated from below so that, the temperatures and densities at the 
bottom surface 𝑧 = 0 are 𝑇଴ and 𝜌଴ and at the upper surface 𝑧 = 𝑑 are 𝑇ௗ and 𝜌ௗ 
respectively, and that a uniform temperature gradient 𝛽(= |𝑑𝑇 𝑑𝑧⁄ |) and a uniform solute 
gradient 𝛽′(|𝑑𝐶 𝑑𝑧⁄ |) are maintained. The gravity field 𝑔⃗(0,0, −𝑔)and a uniform 
horizontal magnetic field 𝐻ሬሬ⃗ (𝐻, 0,0) pervade the system. This fluid layer is flowing through 
an isotropic and homogeneous porous medium of porosity 𝜀 and medium permeability 𝑘ଵ. 
Let 𝑝, 𝜌, 𝑇, 𝐶, 𝛼, 𝛼 ′, 𝑔, 𝜂, 𝜇௘ , 𝑁, 𝑒 𝑎𝑛𝑑 𝑞⃗(𝑢, 𝑣, 𝑤) denote, respectively, the fluid pressure, 
density, temperature, solute concentration, thermal coefficient of expansion, an analogous 
solvent coefficient of expansion, gravitational acceleration, resistivity, magnetic 
permeability, electron number density, charge of an electron and fluid velocity. The 
equations expressing the conservation of momentum, mass, temperature, solute 
concentration and equation of state of couple-stress fluid through porous medium [8, 13] 
are 

1

𝜀
ቈ
𝜕𝑞⃗

𝜕𝑡
+

1

𝜀
(𝑞⃗. ∇)𝑞⃗቉

= −
1

𝜌଴
∇𝑝 + 𝑔⃗ ൬1 +

𝛿𝜌

𝜌଴
൰ −

1

𝑘ଵ
ቆ𝜈 −

𝜇′

𝜌଴
∇ଶቇ 𝑞⃗ +

𝜇௘

4𝜋𝜌଴
൫∇ × 𝐻ሬሬ⃗ ൯ × 𝐻ሬሬ⃗ ,   (1) 

∇. 𝑞⃗ = 0,                                                                                                            (2) 

𝐸
𝜕𝑇

𝜕𝑡
+ (𝑞⃗. ∇)𝑇 = 𝜅∇ଶ𝑇,                                                                                 (3) 

𝐸′ 𝜕𝐶

𝜕𝑡
+ (𝑞⃗. ∇)𝐶,                                                                                                (4) 

𝜌 = 𝜌଴[1 − 𝛼(𝑇 − 𝑇଴) + 𝛼 ′(𝐶 − 𝐶଴)],                                                        (5) 
where the suffix zero refers to values at the reference level 𝑧 = 0 and in writing equation 
(1), use has been made of the Boussinesq approximation which states that the density 
variations are ignored in all terms in the equation of motion except the external force term. 
The magnetic permeability 𝜇௘, the kinematic viscosity 𝜈, the kinematic viscoelasticity 𝜈 ′, 
the thermal diffusivity 𝜅 and the solute diffusivity 𝜅 ′ are all assumed to be constants. 
The Maxwell’s equations yield 

𝜀
𝑑𝐻ሬሬ⃗

𝑑𝑡
= ൫𝐻ሬሬ⃗ . ∇൯𝑞⃗ + 𝜀𝜂∇ଶ𝐻ሬሬ⃗ −

𝑐𝜀

4𝜋𝑁𝑒
∇ × ൣ൫∇ × 𝐻ሬሬ⃗ ൯ × 𝐻ሬሬ⃗ ൧,                                    (6) 

∇. 𝐻ሬሬ⃗ = 0,                                                                                                                         (7) 

where 
ௗ

ௗ௧
=

డ

డ௧
+ 𝜀ିଵ𝑞⃗. ∇ stand for the convection derivative. 

Here 𝐸 = 𝜀 + (1 − 𝜀) ቀ
ఘೞ௖ೞ

ఘబ௖೔
ቁ is a constant and 𝐸′ is a constant analogous to 𝐸 but 

corresponding to solute rather than heat.𝜌௦, 𝑐௦ and 𝜌଴, 𝑐௜ stand for density and heat capacity 
of solid (porous matrix) material and fluid, respectively. The steady state solution is 

𝑞⃗ = (0,0,0), 𝑇 = −𝛽𝑧, 𝐶 = −𝛽′𝑧 + 𝐶଴, 𝜌 = 𝜌଴(1 + 𝛼𝛽𝑧 − 𝛼 ′𝛽′𝑧).                 (8) 
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Here we use linearized stability theory and normal mode analysis method. Assume small 
perturbations around the basic solution, and let 𝛿𝜌, 𝛿𝑝, 𝜃, 𝛾, 𝑞⃗(𝑢, 𝑣, 𝑤) and ℎሬ⃗ ൫ℎ௫, ℎ௬, ℎ௭൯ 
denote respectively the perturbations in fluid density 𝜌, pressure 𝑝, temperature 𝑇, solute 
concentration 𝐶, velocity (0,0,0) and magnetic field 𝐻ሬሬ⃗ (𝐻, 0,0). The change in density 𝛿𝜌, 
caused by the perturbations 𝜃 and 𝛾 in temperature and concentration, is given by 
 

𝛿𝜌 = −𝜌଴(𝛼𝜃 − 𝛼 ′𝛾).                                                                                                  (9) 
 
Then the linearized perturbation equations of the couple-stress fluid become 

1

𝜀

𝜕𝑞⃗

𝜕𝑡
= −

1

𝜌଴

(∇𝛿𝑝) − 𝑔⃗(𝛼𝜃 − 𝛼 ′𝛾) −
1

𝑘ଵ
ቆ𝜈 −

𝜇′

𝜌଴
∇ଶቇ 𝑞⃗ +

𝜇௘

4𝜋𝜌଴
൫∇ × ℎሬ⃗ ൯ × 𝐻ሬሬ⃗ ,            (10) 

∇. 𝑞⃗ = 0,                                                                                                                                            (11) 

𝐸
𝜕𝜃

𝜕𝑡
= 𝛽𝑤 + 𝜅∇ଶ𝜃,                                                                                                                      (12) 

𝐸′ 𝜕𝛾

𝜕𝑡
= 𝛽′𝑤 + 𝜅 ′∇ଶ𝛾,                                                                                                                   (13) 

𝜀
𝜕ℎሬ⃗

𝜕𝑡
= ൫𝐻ሬሬ⃗ . ∇൯𝑞⃗ + 𝜀𝜂∇ଶℎሬ⃗ −

𝑐𝜀

4𝜋𝑁𝑒
∇ × ൣ൫∇ × ℎሬ⃗ ൯ × 𝐻ሬሬ⃗ ൧,                                                         (14) 

∇. ℎሬ⃗ = 0.                                                                                                                                           (15) 
 
3. THE DISPERSION RELATION 
For obtaining the dispersion relation, we now analyzing the disturbances into normal 
modes, assuming that the perturbation quantities are of the form 
[𝑤, ℎ௭ , 𝜃, 𝛾, 𝜁, 𝜉]

= [𝑊(𝑧), 𝐾(𝑧), Θ(𝑧), Γ(𝑧), 𝑍(𝑧), 𝑋(𝑧)]𝑒𝑥𝑝൫𝑖𝑘௫𝑥 + 𝑖𝑘௬𝑦

+ 𝑛𝑡൯,                                                                                                                     (16) 
where 𝑘௫, 𝑘௬ are the wave numbers along the 𝑥 − and 𝑦 − directions respectively, 𝑘 =

ට൫𝑘௫
ଶ + 𝑘௬

ଶ൯ is the resultant wave number and 𝑛 is the growth rate, which is, in general, a 

complex constant. Here 𝜁 =
డ௩

డ௫
−

డ௨

డ௬
 and 𝜉 =

డℎ೤

డ௫
−

డℎೣ

డ௬
 stand for the z-components of 

vorticity and current density, respectively. 
Expressing the coordinates 𝑥, 𝑦, 𝑧 in the new unit of length 𝑑 and letting 𝑎 = 𝑘𝑑, 𝜎 =
௡ௗమ

ఔ
, 𝑝ଵ =

ఔ

఑
, 𝑝ଶ =

ఔ

ఎ
 , 𝑞 =

ఔ

఑′  , 𝑃௟ =
௞భ

ௗమ
 , 𝐹 =

ఓ′ ൫ఘబௗమ൯ൗ

ఔ
 and 𝐷 =

ௗ

ௗ௭
 ; equations (10)-(15), 

using (16), yield 

(𝐷ଶ − 𝑎ଶ) ൤
𝜎

𝜀
+

1

𝑃௟
−

𝐹

𝑃௟

(𝐷ଶ − 𝑎ଶ)൨ 𝑊 −
𝑖𝑘௫𝜇௘𝐻𝑑ଶ

4𝜋𝜌଴𝜈
(𝐷ଶ − 𝑎ଶ)𝐾 +

𝑔𝑎ଶ𝑑ଶ

𝜈
(𝛼Θ − 𝛼 ′Γ)

= 0,                                                                                                                         (17) 

൤
𝜎

𝜀
+

1

𝑃௟
−

𝐹

𝑃௟

(𝐷ଶ − 𝑎ଶ)൨ 𝑍 =
𝑖𝑘௫𝜇௘𝐻𝑑ଶ

4𝜋𝜌଴𝜈
𝑋,                                                                              (18) 

(𝐷ଶ − 𝑎ଶ − 𝑝ଶ𝜎)𝐾 = − ቆ
𝑖𝑘௫𝐻𝑑ଶ

𝜂𝜀
ቇ 𝑊 +

𝑖𝑐𝑘௫𝐻𝑑ଶ

4𝜋𝑁𝑒𝜂
𝑋,                                                           (19) 

(𝐷ଶ − 𝑎ଶ − 𝑝ଶ𝜎)𝑋 = − ቆ
𝑖𝑘௫𝐻𝑑ଶ

𝜂𝜀
ቇ 𝑍 −

𝑖𝑐𝑘௫𝐻

4𝜋𝑁𝑒𝜂
(𝐷ଶ − 𝑎ଶ)𝐾,                                             (20) 
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(𝐷ଶ − 𝑎ଶ − 𝐸𝑝ଵ𝜎)Θ = − ቆ
𝛽𝑑ଶ

𝜅
ቇ 𝑊,                                                                                        (21) 

(𝐷ଶ − 𝑎ଶ − 𝐸′𝑞𝜎)Γ = − ቆ
𝛽′𝑑ଶ

𝜅 ′ ቇ 𝑊.                                                                                        (22) 

                     Consider the case where both boundaries are free as well as perfect 
conductors of both heat and solute concentration, while the adjoining medium is perfectly 
conducting. The case of two free boundaries is a little artificial but it enables us to find 
analytical solutions and to make some qualitative conclusions. The appropriate boundary 
conditions, with respect to which equations (17)-(22) must be solved, are  

𝑊 = 𝐷ଶ𝑊 = 𝑋 = 𝐷𝑍 = 0, Θ = 0, Γ = 0, 𝑎𝑡 𝑧 = 0 𝑎𝑛𝑑 1 
                                 𝐷𝑋 = 0, 𝐾 = 0 on a perfectly conducting boundary 
and 𝑋 = 0, ℎ௫, ℎ௬, ℎ௭ are continuous with an external vacuum field on a non-conducting 
boundary.                                                                                                                            
(23) 
The case of two free boundaries, though little artificial, is the most appropriate for stellar 
atmospheres [21]. Using the above boundary conditions, it can be shown that all the even 
order derivatives of 𝑊 must vanish for 𝑧 = 0 and 1 and hence the proper solution 𝑊 
characterizing the lowest mode is 

𝑊 = 𝑊଴ sin 𝜋𝑧,                                                                                                                         (24) 
where  𝑊଴ is a constant. 
Eliminating Θ, Γ, 𝐾, 𝑍 and 𝑋 between equations (17)-(22) and substituting the proper 
solution (24) in the resultant equation, we obtain the dispersion relation 

𝑅ଵ = ൬
1 + 𝑥

𝑥
൰ ቈ

𝑖𝜎ଵ

𝜀
+

1

𝑃
+

𝜋ଶ𝐹(1 + 𝑥)

𝑃
቉ [1 + 𝑥 + 𝑖𝐸𝑝ଵ𝜎ଵ] + 𝑆ଵ

(1 + 𝑥 + 𝑖𝐸𝑝ଵ𝜎ଵ)

(1 + 𝑥 + 𝑖𝐸′𝑞𝜎ଵ)

+ 𝑄ଵ𝑐𝑜𝑠ଶ𝜃

(1 + 𝑥)[1 + 𝑥 + 𝑖𝐸𝑝ଵ𝜎ଵ]

ቐ
൬

𝑖𝜎ଵ

𝜀
+

1
𝑃

+
𝜋ଶ𝐹(1 + 𝑥)

𝑃
൰ ൤

1 + 𝑥 +
𝑖𝑝ଶ𝜎ଵ

൨

+𝑄ଵ𝑥𝑐𝑜𝑠ଶ𝜃

ቑ

⎩
⎪⎪
⎨

⎪⎪
⎧൤

𝑖𝜎ଵ

𝜀
+

1
𝑃

+
𝜋ଶ𝐹(1 + 𝑥)

𝑃
൨ [1 + 𝑥 + 𝑖𝑝ଶ𝜎ଵ]ଶ

+𝑄ଵ𝑥𝑐𝑜𝑠ଶ𝜃[1 + 𝑥 + 𝑖𝑝ଶ𝜎ଵ]

+𝑀𝑥𝑐𝑜𝑠ଶ𝜃(1 + 𝑥) ቎

𝑖𝜎ଵ

𝜀
+

1
𝑃

+

𝜋ଶ𝐹(1 + 𝑥)
𝑃

቏

⎭
⎪⎪
⎬

⎪⎪
⎫

                                                                                                  (25)

 

where  

𝑅ଵ =
𝑔𝛼𝛽𝑑ସ

𝜈𝜅𝜋ସ
, 𝑆ଵ =

𝑔𝛼 ′𝛽′𝑑ସ

𝜈𝜅 ′𝜋ସ
, 𝑄ଵ =

𝜇௘𝐻ଶ𝑑ଶ

4𝜋𝜌଴𝜈𝜂𝜀𝜋ଶ
  , 𝑀 = ൬

𝑐𝐻

4𝜋𝑁𝑒𝜂
൰

ଶ

 , 𝑥 =
𝑎ଶ

𝜋ଶ
, 𝑖𝜎ଵ =

𝜎

𝜋ଶ
  , 

𝑘௫ = 𝑘𝑐𝑜𝑠𝜃𝑎𝑛𝑑𝑃 = 𝜋ଶ𝑃௟    . 
Equation (25) is the required dispersion relation including the effects of magnetic field, 
Hall currents, stable solute gradient and medium permeability on a layer of couple-stress 
fluid heated and soluted from below in porous medium in the presence of a uniform 
horizontal magnetic field and Hall currents. 
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4. IMPORTANT THEOREMS AND DISCUSSION 
THEOREM 1: For stationary convection case 

(I) The magnetic field and stable solute gradient postpone the onset of convection. 
(II)  Hall currents hasten the onset of convection. 
(III) The medium permeability hastens the onset of convection whereas the 

couple-stress parameter postpones the onset of convection. 

Proof: When the instability sets in as stationary convection, the marginal state will be 
characterized by 𝜎 = 0. Putting 𝜎 = 0, the dispersion relation (25) reduces to 

𝑅ଵ = ൬
1 + 𝑥

𝑥
൰

൬
(1 + 𝑥){1 + 𝜋ଶ𝐹(1 + 𝑥)}

𝑃
+ 𝑄ଵ𝑥𝑐𝑜𝑠ଶ𝜃൰

ଶ

+

𝑀𝑥𝑐𝑜𝑠ଶ𝜃(1 + 𝑥){1 + 𝜋ଶ𝐹(1 + 𝑥)}ଶ

𝑃ଶ

൝
(1 + 𝑥 + 𝑀𝑥𝑐𝑜𝑠ଶ𝜃){1 + 𝜋ଶ𝐹(1 + 𝑥)}

𝑃
+𝑄ଵ𝑥𝑐𝑜𝑠ଶ𝜃

ൡ

+ 𝑆ଵ  ,           (26) 

which expresses the modified Rayleigh number 𝑅ଵ as a function of the dimensionless wave 
number 𝑥 and the parameters 𝑆ଵ, 𝑄ଵ, 𝑀, 𝐹 and 𝑃. 
To study the effects of stable solute gradient, horizontal magnetic field, Hall currents, 
medium permeability and couple-stress parameter, we examine the natures of 
ௗோభ

ௗௌభ
,

ௗோభ

ௗொభ
,

ௗோభ

ௗெ
,

ௗோభ

ௗ௉
 and 

ௗோభ

ௗி
 , analytically.  

(I) Equation (26) yields 

𝑑𝑅ଵ

𝑑𝑆ଵ
= +1,                                   (27) 

𝑑𝑅ଵ

𝑑𝑄ଵ

= ൬
1 + 𝑥

𝑥
൰ 𝑥𝑐𝑜𝑠ଶ𝜃

⎣
⎢
⎢
⎢
⎢
⎡

(1 + 𝑥){1 + 𝜋ଶ𝐹(1 + 𝑥)}
𝑃

+ 𝑄ଵ𝑥𝑐𝑜𝑠ଶ𝜃 +

𝑀𝑥𝑐𝑜𝑠ଶ𝜃{1 + 𝜋ଶ𝐹(1 + 𝑥)}𝑄ଵ𝑥𝑐𝑜𝑠ଶ𝜃

𝑃 ൭
(1 + 𝑥 + 𝑀𝑥𝑐𝑜𝑠ଶ𝜃){1 + 𝜋ଶ𝐹(1 + 𝑥)}

𝑃
+

𝑄ଵ𝑥𝑐𝑜𝑠ଶ𝜃
൱

⎦
⎥
⎥
⎥
⎥
⎤

൭
(1 + 𝑥 + 𝑀𝑥𝑐𝑜𝑠ଶ𝜃){1 + 𝜋ଶ𝐹(1 + 𝑥)}

𝑃
+

𝑄ଵ𝑥𝑐𝑜𝑠ଶ𝜃
൱

 ,                                                                                

 
which are positive. Thus, the stable solute gradient and magnetic field postpone the onset 
of convection. 

(II) Equation (26) also yields 

𝑑𝑅ଵ

𝑑𝑀
= −𝑄ଵ𝑥𝑐𝑜𝑠ସ𝜃(1 + 𝑥) 

൬
(1 + 𝑥){1 + 𝜋ଶ𝐹(1 + 𝑥)}

𝑃
+ 𝑄ଵ𝑥𝑐𝑜𝑠ଶ𝜃൰ ൬

{1 + 𝜋ଶ𝐹(1 + 𝑥)}
𝑃

൰

൬
(1 + 𝑥 + 𝑀𝑥𝑐𝑜𝑠ଶ𝜃){1 + 𝜋ଶ𝐹(1 + 𝑥)}

𝑃
+ 𝑄ଵ𝑥𝑐𝑜𝑠ଶ𝜃൰

ଶ ,                          (29) 
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which is negative. Hence, for stationary convection, the Hall currents hasten the onset of 
convection on the thermosolutal instability of couple-stress fluid in porous medium in 
hydromagnetics in the presence of Hall currents.  

(III) It is evident from equation (26) that 

𝑑𝑅ଵ

𝑑𝑃
= 

−
(1 + 𝑥){1 + 𝜋ଶ𝐹(1 + 𝑥)}

𝑥𝑃ଶ
 

⎣
⎢
⎢
⎢
⎡ ቀ

1 + 𝑥
𝑃ଶ ቁ (1 + 𝑥 + 𝑀𝑥𝑐𝑜𝑠ଶ𝜃)ଶ{1 + 𝜋ଶ𝐹(1 + 𝑥)}ଶ

+
2𝑄ଵ𝑥𝑐𝑜𝑠ଶ𝜃(1 + 𝑥)(1 + 𝑥 + 𝑀𝑥𝑐𝑜𝑠ଶ𝜃){1 + 𝜋ଶ𝐹(1 + 𝑥)}

𝑃
+𝑄ଵ

ଶ𝑥ଶ𝑐𝑜𝑠ସ𝜃(1 + 𝑥 − 𝑀𝑥𝑐𝑜𝑠ଶ𝜃) ⎦
⎥
⎥
⎥
⎤

൤
(1 + 𝑥 + 𝑀𝑥𝑐𝑜𝑠ଶ𝜃){1 + 𝜋ଶ𝐹(1 + 𝑥)}

𝑃
+ 𝑄ଵ𝑥𝑐𝑜𝑠ଶ𝜃൨

ଶ  ,        (30) 

𝑑𝑅ଵ

𝑑𝐹
= ቆ

(1 + 𝑥)ଶ𝜋ଶ

𝑥𝑃
ቇ 

⎣
⎢
⎢
⎢
⎡ ቀ

1 + 𝑥
𝑃ଶ ቁ (1 + 𝑥 + 𝑀𝑥𝑐𝑜𝑠ଶ𝜃)ଶ{1 + 𝜋ଶ𝐹(1 + 𝑥)}ଶ

+
2𝑄ଵ𝑥𝑐𝑜𝑠ଶ𝜃(1 + 𝑥)(1 + 𝑥 + 𝑀𝑥𝑐𝑜𝑠ଶ𝜃){1 + 𝜋ଶ𝐹(1 + 𝑥)}

𝑃
+𝑄ଵ

ଶ𝑥ଶ𝑐𝑜𝑠ସ𝜃(1 + 𝑥 − 𝑀𝑥𝑐𝑜𝑠ଶ𝜃) ⎦
⎥
⎥
⎥
⎤

൤
(1 + 𝑥 + 𝑀𝑥𝑐𝑜𝑠ଶ𝜃){1 + 𝜋ଶ𝐹(1 + 𝑥)}

𝑃
+ 𝑄ଵ𝑥𝑐𝑜𝑠ଶ𝜃൨

ଶ ,   

                                                                                                                                           (31) 
Hence, it is clear from (30) and (31) that, for stationary convection, the medium 
permeability hastens the onset of convection whereas, the couple-stress postpones the onset 
of convection on the thermal instability of couple-stress fluid in porous medium in 
hydromagnetics in the presence of Hall currents for all wave numbers 

(1 + 𝑥) > 𝑀𝑥𝑐𝑜𝑠ଶ𝜃 
which is normally satisfied as the Hall currents parameter 𝑀 is very small compared to 
unity. 
Theorem 1 is also proved numerically as follow: 
                In Figure 1, 𝑅ଵ is plotted against 𝑥 for 𝑆ଵ = 10, 20, 30; 𝑃 = 50, 𝜃 = 45଴, 𝐹 =
2, 𝑄ଵ = 10 and 𝑀 = 10. It is clear that the stable solute gradient postpones the onset of 
convection in a couple-stress fluid heated and soluted from below in a porous medium in 
the presence of Hall currents as the Rayleigh number increases with the increase in stable 
solute gradient parameter. 
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Figure 1. The variation of Rayleigh number (𝑅ଵ) with wave number (𝑥) for 𝑃 =

50, 𝐹 =       2, 𝜃= 45଴, 𝑀 = 10, 𝑄ଵ = 10; 𝑆ଵ = 10 for curve 1, 𝑆ଵ = 20 for curve 2 
and       𝑆ଵ = 30 for curve 3. 

In Figure 2, 𝑅ଵ is plotted against 𝑥 for 𝑄ଵ = 10, 20, 30; 𝑃 = 50, 𝜃 = 45଴, 𝐹 = 2, 𝑆ଵ = 10 
and 𝑀 = 10. It is clear that the magnetic field postpones the onset of convection in a 
couple-stress fluid heated from below in a porous medium in the presence of Hall currents 
as the Rayleigh number increases with the increase in magnetic field parameter.  

 
 Figure 2. The variation of Rayleigh number (𝑅ଵ) with wave number (𝑥) for 𝑃 = 50, 𝐹 =
2, 𝜃                  = 45଴, 𝑀 = 10, 𝑆ଵ = 10; 𝑄ଵ = 10 for curve 1, 𝑄ଵ = 20 for curve 2 and 
𝑄ଵ = 30                  for curve 3. 
In Figure 3, 𝑅ଵ is plotted against 𝑥 for 𝑀 = 10, 20, 30; 𝑃 = 50, 𝜃 = 45଴, 𝐹 = 2, 𝑆ଵ = 10 
and 𝑄ଵ = 10. Here we find that the Hall currents hastens the onset of convection for all 
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wave numbers as the Rayleigh number decreases with the increase in the Hall currents 
parameter. 

 
Figure 3. The variation of Rayleigh number (𝑅ଵ) with wave number (𝑥) for 𝑃 = 50, 𝐹 =
2, 𝜃                 = 45଴, 𝑄ଵ = 10, 𝑆ଵ = 10; M= 10 for curve 1, M= 20 for curve 2 and M=
30 for                 curve 3. 
In Figure 4, 𝑅ଵ is plotted against 𝑥 for 𝑅ଵ is plotted against 𝑥 for 𝑃 = 10, 20, 30; 𝑀 =
0.1, 𝜃 = 45଴, 𝐹 = 2, 𝑆ଵ = 10 and 𝑄ଵ = 100. It is clear that when 𝑀 ≪ 1, the medium 
permeability always hastens the onset of convection for all wave numbers as the Rayleigh 
number decreases with an increase in medium permeability parameter. 

 
Figure 4. The variation of Rayleigh number (𝑅ଵ) with wave number (𝑥) for 𝐹 = 2, 𝑄ଵ =
100,                  𝜃 = 45଴, 𝑀 = 0.1, 𝑆ଵ = 10; P= 10 for curve 1, P= 20 for curve 2 and P=
30 for                 curve 3. 
In Figure 5, 𝑅ଵ is plotted against 𝑥 for 𝑃 = 10, 20, 30; 𝑀 = 100, 𝜃 = 45଴, 𝐹 = 2, 𝑆ଵ = 10 
and 𝑄ଵ = 100. Here we find that when 𝑀 > 1, the medium permeability postpones the 
onset of convection for small wave numbers only as the Rayleigh number increases with an 
increase in medium permeability parameter and hastens the onset of convection for higher 
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wave numbers as the Rayleigh number decreases with an increase in medium permeability 
parameter. 

 
Figure 5. The variation of Rayleigh number (𝑅ଵ) with wave number (𝑥) for 𝐹 = 2, 𝑄ଵ =
100,                    𝜃 = 45଴, 𝑀 = 100, 𝑆ଵ = 10; P= 10 for curve 1, P= 20 for curve 2 and P=
30 for                curve 3. 
In Figure 6, 𝑅ଵ is plotted against 𝑥 for 𝐹 = 1,2,3, 4; 𝑄ଵ = 100, 𝜃 = 45଴, 𝑃 = 10, 𝑆ଵ = 10 
and 𝑀 = 0.1. It is clear that when 𝑀 ≪ 1, the couple-stress postpones the onset of 
convection for all wave numbers as the Rayleigh number increases with the increase in 
couple-stress parameter. 

 
Figure 6. The variation of Rayleigh number (𝑅ଵ) with wave number (𝑥) for P= 10, 𝜃 = 
                   45଴, 𝑀 = 0.1, 𝑄ଵ = 100, 𝑆ଵ = 10; F= 1 for curve 1, F= 2 for curve 2, F= 3 
for                  curve 3 and 𝐹 = 4 for curve 4.. 
In Figure 7, 𝑅ଵ is plotted against 𝑥 for 𝐹 = 1,2,3;  𝑄ଵ = 100, 𝜃 = 45଴, 𝑃 = 10, 𝑆ଵ = 10 
and 𝑀 = 100. It is clear that when 𝑀 > 1, the couple-stress hastens the onset of 
convection for small wave numbers as the Rayleigh number decreases with the increase in 
couple-stress parameter and postpones the onset of convection for higher wave numbers as 
the Rayleigh number increases with the increase in couple-stress parameter. 
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Figure 7. The variation of Rayleigh number (𝑅ଵ) with wave number (𝑥) for P= 10, 𝜃 = 
                   45଴, 𝑀 = 100, 𝑄ଵ = 100, 𝑆ଵ = 10; F= 1 for curve 1, F= 2 for curve 2 and F=
3                  for curve 3. 
THEOREM 2: The system is stable or unstable. 
 Proof: Multiplying equation (17) by 𝑊∗, which is the complex conjugate of 𝑊, and using 
equations (18)-(22) together with the boundary conditions (23), we obtain 

𝐹𝐼ଵ + ቀ1 + 𝑃௟

𝜎

𝜀
ቁ 𝐼ଶ − ቆ

𝑔𝛼𝜅𝑎ଶ

𝜈𝛽
𝑃௟ቇ [𝐼ଷ + 𝐸𝑝ଵ𝜎∗𝐼ସ] + ቆ

𝑔𝛼 ′𝜅 ′𝑎ଶ

𝜈𝛽′ ቇ [𝐼ହ + 𝐸′𝑞𝜎∗𝐼଺]

+
𝜇௘𝜀𝜂

4𝜋𝜌଴𝜈
𝑃௟[𝐼଻ + 𝑝ଶ𝜎∗𝐼 ] +

𝜇௘𝜀𝜂𝑑ଶ

4𝜋𝜌଴𝜈
𝑃௟[𝐼ଵଵ + 𝑝ଶ𝜎𝐼ଵଶ]

+ 𝑑ଶ ൤൬1 + 𝑃௟

𝜎∗

𝜀
൰ 𝐼ଵ଴ + 𝐹𝐼ଽ൨ = 0 ,                                                        (32) 

where 

𝐼ଵ = න (|𝐷ଶ𝑊|ଶ + 2𝑎ଶ|𝐷𝑊|ଶ + 𝑎ସ|𝑊|ଶ)𝑑𝑧 ,    
ଵ

଴

 

𝐼ଶ = න (|𝐷𝑊|ଶ + 𝑎ଶ|𝑊|ଶ)𝑑𝑧 ,
ଵ

଴

 

𝐼ଷ = න (|𝐷Θ|ଶ + 𝑎ଶ|Θ|ଶ)𝑑𝑧,     
ଵ

଴

 

𝐼ସ = න (|Θ|ଶ)𝑑𝑧 ,     𝐼ହ = න (|𝐷Γ|ଶ + 𝑎ଶ|Γ|ଶ)𝑑𝑧  ,
ଵ

଴

ଵ

଴

 

𝐼଺ = න (|Γ|ଶ)𝑑𝑧 ,    
ଵ

଴

 

𝐼଻ = න (|𝐷ଶ𝐾|ଶ + 2𝑎ଶ|𝐷𝐾|ଶ + 𝑎ସ|𝐾|ଶ)𝑑𝑧,
ଵ

଴

 

𝐼 = න (|𝐷𝐾|ଶ + 𝑎ଶ|𝐾|ଶ)𝑑𝑧
ଵ

଴

,  

                              𝐼ଽ = න (|𝐷𝑍|ଶ + 𝑎ଶ|𝑍|ଶ)𝑑𝑧 ,
ଵ

଴
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𝐼ଵ଴ = න (|𝑍|ଶ)𝑑𝑧 ,    
ଵ

଴

 

𝐼ଵଵ = න (|𝐷𝑋|ଶ + 𝑎ଶ|𝑋|ଶ)𝑑𝑧 ,
ଵ

଴

 

𝐼ଵଶ = න (|𝑋|ଶ)𝑑𝑧 .                                                                                                                        (33)
ଵ

଴

 

The integrals 𝐼ଵ , … … . , 𝐼ଵଶ are all positive definite. Putting = 𝜎௥ + 𝑖𝜎௜ , where 𝜎௥  , 𝜎௜ are 
real and equating the real and imaginary parts of equation (32), we obtain 

𝜎௥ ቈ
𝐼ଶ

𝜀
−

𝑔𝛼𝜅𝑎ଶ

𝜈𝛽
𝐸𝑝ଵ𝐼ସ +

𝑔𝛼 ′𝜅 ′𝑎ଶ

𝜈𝛽′ 𝐸′𝑞𝐼଺ +
𝜇௘𝜀𝜂

4𝜋𝜌଴𝜈
𝑝ଶ(𝐼 + 𝑑ଶ𝐼ଵଶ) +

𝑑ଶ

𝜀
𝐼ଵ଴቉

= − ቈ
𝐹

𝑃௟
𝐼ଵ +

1

𝑃௟
𝐼ଶ −

𝑔𝛼𝜅𝑎ଶ

𝜈𝛽
𝐼ଷ +

𝑔𝛼 ′𝜅 ′𝑎ଶ

𝜈𝛽′ 𝐼ହ +
𝜇௘𝜀𝜂

4𝜋𝜌଴𝜈
(𝐼଻ + 𝑑ଶ𝐼ଵଵ)

+
𝑑ଶ

𝑃௟

(𝐼ଵ଴ + 𝐹𝐼ଽ)቉ ,                                                                                             (34) 

𝜎௜ ቈ
𝐼ଶ

𝜀
+

𝑔𝛼𝜅𝑎ଶ

𝜈𝛽
𝐸𝑝ଵ𝐼ସ −

𝑔𝛼 ′𝜅 ′𝑎ଶ

𝜈𝛽′ 𝐸′𝑞𝐼଺ −
𝜇௘𝜀𝜂

4𝜋𝜌଴𝜈
𝑝ଶ(𝐼 − 𝑑ଶ𝐼ଵଶ) −

𝑑ଶ

𝜀
𝐼ଵ଴቉

= 0 .                                                                                                                       (35) 
It is evident from equation (34) that 𝜎௥ is either positive or negative. The system is, 
therefore, either stable or unstable.  
THEOREM 3: The modes may be oscillatory or non-oscillatory in contrast to case of no 
magnetic field, and in the absence of stable solute gradient where modes are non-
oscillatory. 
Proof: Equation (35) yields that 𝜎௜ may be either zero or non-zero, meaning that the modes 
may be either non-oscillatory or oscillatory. In the absence of stable solute gradient and 
magnetic field, equation (35) reduces to 

ቈ
𝐼ଶ

𝜀
+

𝑔𝛼𝜅𝑎ଶ

𝜈𝛽
𝐸𝑝ଵ𝐼ସ቉ 𝜎௜

= 0 ,                                                                                                           (36) 
and the terms in brackets are positive definite. Thus 𝜎௜ = 0, which means that oscillatory 
modes are not allowed and the principle of exchange of stabilities is satisfied for a porous 
medium, in the absence of stable solute gradient and magnetic field. This result is true for 
the porous as well as non-porous medium as studied in [1]. The oscillatory modes are 
introduced due to the presence of the stable solute gradient and the magnetic field (and 
corresponding Hall currents), which were non-existent in their absence. 

THEOREM 4:  The system is stable for 
௚ఈ఑

ఔఉ

௉೗

ி
≤

ଶ଻ ర

ସ
 and under the condition 

௚ఈ఑

ఔఉ

௉೗

ி
>

ଶ଻ ర

ସ
 , the system becomes unstable. 

Proof: From equation (35), it is clear that 𝜎௜ is zero when the quantity multiplying it is not 
zero and arbitrary when this quantity is zero. 
If  𝜎௜ ≠ 0, equation (34) upon utilizing (35) and the Rayleigh-Ritz inequality gives 
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ቈ
27𝜋ସ

4
−

𝑔𝛼𝜅

𝜈𝛽

𝑃௟

𝐹
቉ න|𝑊|ଶ 𝑑𝑧 +

(𝜋ଶ + 𝑎ଶ)

𝑎ଶ

𝑃௟

𝐹

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝜇௘𝜀𝜂

2𝜋𝜌଴𝜈
𝑝ଶ𝑑ଶ𝜎௥𝐼ଵଶ +

𝜇௘𝜀𝜂

4𝜋𝜌଴𝜈
𝑑ଶ𝐼ଵଵ

+
𝑑ଶ

𝑃௟
𝐼ଵ଴ +

𝑑ଶ𝐹

𝑃௟
𝐼ଽ +

𝜇௘𝜀𝜂

4𝜋𝜌଴𝜈
𝐼଻ +

𝑔𝛼ᇱ𝜅ᇱ𝑎ଶ

𝜈𝛽ᇱ
𝐼ହ +

1

𝑃௟
𝐼ଶ +

2𝜎௥

𝜀
𝐼ଶ ⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

≤ 0,

ଵ

଴

 

                                                                                                                                                  
                               (37)     

since minimum value of 
൫గమା௔మ൯

య

௔మ
 with respect to 𝑎ଶ is 

ଶ଻ ర

ସ
. 

Now, let 𝜎௥ ≥ 0, we necessarily have from inequality (37) that 
𝑔𝛼𝜅

𝜈𝛽

𝑃௟

𝐹
 >  

27𝜋ସ

4
.                                                                               (38) 

Hence, if 
𝑔𝛼𝜅

𝜈𝛽

𝑃௟

𝐹
 ≤  

27𝜋ସ

4
,                                                                               (39) 

Then 𝜎௥ < 0. Therefore, the system is stable. 
Thus, under condition (39), the system is stable and under condition (38) the system 
becomes unstable 
THEOREM 5: The sufficient conditions for the non-existence of overstability are 

𝜅 < 𝑚𝑖𝑛 ቆ𝐸𝜂,
𝐸𝜅 ′

𝐸′ ቇ   𝑎𝑛𝑑  𝜈 > 𝑚𝑎𝑥 ቈ
𝜌଴𝑘௫

ଶ

𝜇′ ൬
𝑐𝐻𝑘ଵ

4𝜀𝑁𝑒
൰

ଶ

 , ൬
𝜇௘

2𝜋𝜌଴
൰

ଵ
ଶൗ

൬
𝑘ଵ𝐻𝑘௫

𝜀
൰቉. 

Proof: Here we discuss the possibility of whether instability may occur as overstability. 
Since we wish to determine the critical Rayleigh number for the onset of instability via a 
state of pure oscillations, it suffices to find conditions for which (25) will admit of 
solutions with 𝜎ଵ real.  
Equating real and imaginary parts of equation (25) and eliminating 𝑅ଵ between them, we 
obtain 
 

𝐴ସ𝑐ଵ
ସ + 𝐴ଷ𝑐ଵ

ଷ + 𝐴ଶ𝑐ଵ
ଶ + 𝐴ଵ𝑐ଵ + 𝐴଴ = 0 ,                                                                  (40) 

where we have put 𝑐ଵ = 𝜎ଵ
ଶ , 𝑏 = 1 + 𝑥 and  

𝐴ସ =
𝐸′మ𝑞ଶ𝑝ଶ

ସ

𝜀ଶ
ቈቆ

1

𝜀
+

𝐸𝑝ଵ𝜋ଶ𝐹

𝑃
ቇ 𝑏 +

𝐸𝑝ଵ

𝑃
቉  ,                                                              (41) 
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𝐴ଷ = ቈ𝐸′మ𝑞ଶ ቆ
1

𝜀
+

𝐸𝑝ଵ𝜋ଶ𝐹

𝑃
ቇ ቆ

𝑝ଶ
ଶ𝜋ସ𝐹ଶ

𝑃ଶ
+

2

𝜀ଶ
ቇ 𝑝ଶ

ଶ +
𝑝ଶ

ସ

𝜀ଶ
ቆ

1

𝜀
+

𝐸𝑝ଵ𝜋ଶ𝐹

𝑃
ቇ቉ 𝑏ଷ

+ ൥2𝐸′మ𝑞ଶ ቆ
1

𝜀
+

𝐸𝑝ଵ𝜋ଶ𝐹

𝑃
ቇ ቆ

𝑝ଶ
ଶ𝜋ଶ𝐹

𝑃
−

𝑀𝑥𝑐𝑜𝑠ଶ𝜃

𝜀ଶ
ቇ 𝑝ଶ

ଶ +
𝑝ଶ

ସ𝐸𝑝ଵ

𝜀ଶ𝑃

+
𝐸′మ𝑞ଶ𝐸𝑝ଵ

𝑃
ቆ

𝑝ଶ
ଶ𝜋ସ𝐹ଶ

𝑃ଶ
+

2

𝜀ଶ
ቇ 𝑝ଶ

ଶ൩ 𝑏ଶ

+ 𝐸′మ𝑞ଶ ൥ቆ
1

𝜀
+

𝐸𝑝ଵ𝜋ଶ𝐹

𝑃
ቇ ቆ

𝑝ଶ

𝑃ଶ
−

2𝑄ଵ𝑥𝑐𝑜𝑠ଶ𝜃

𝜀
ቇ 𝑝ଶ

ଷ

+
2𝐸𝑝ଵ𝑝ଶ

ଶ

𝑃
ቆ

𝑝ଶ
ଶ𝜋ଶ𝐹

𝑃ଶ
−

𝑀𝑥𝑐𝑜𝑠ଶ𝜃

𝜀ଶ
ቇ + ൭

𝑝ଶ
ଶ

𝜀ଶ
(𝐸𝑝ଵ − 𝑝ଶ)൱൩ 𝑏

+ ൥
𝐸′మ𝑞ଶ𝐸𝑝ଵ

𝑃
ቆ

𝑝ଶ

𝑃ଶ
−

2𝑄ଵ𝑥𝑐𝑜𝑠ଶ𝜃

𝜀
ቇ 𝑝ଶ

ଷ

+ ൭
𝑝ଶ

ସ

𝜀ଶ
𝑆ଵ(𝐸𝑝ଵ − 𝑝ଶ)(𝑏 − 1)൱൩,                                                                   (42) 

and the coefficients 𝐴଴ , 𝐴ଵ and 𝐴ଶ , being quite lengthy and not needed in the discussion 
of overstability, have not been written here. 
Since 𝜎ଵ is real for overstability, the four values of 𝑐ଵ(= 𝜎ଵ

ଶ) are positive. The sum of roots 

of (40) is −
஺య

஺ర
 , and if this is to be negative, then 𝐴ଷ > 0 , 𝐴ସ > 0. 

It is clear from (41) and (42) that 𝐴ଷ and 𝐴ସ are always positive if 

𝐸𝑝ଵ > 𝑝ଶ , 𝐸𝑝ଵ > 𝐸′𝑞 ,
𝑝ଶ

ଶ𝜋ଶ𝐹

𝑃ଶ
>

𝑀𝑥𝑐𝑜𝑠ଶ𝜃

𝜀ଶ
  𝑎𝑛𝑑 

𝑝ଶ

𝑃ଶ

>
2𝑄ଵ𝑥𝑐𝑜𝑠ଶ𝜃

𝜀
 ,                                                                                                    (43) 

which imply that 

𝜅 < 𝐸𝜂 , 𝜅 <
𝐸𝜅 ′

𝐸′  , 𝜈 >
𝜌଴𝑘௫

ଶ

𝜇′ ൬
𝑐𝐻𝑘ଵ

4𝜀𝑁𝑒
൰

ଶ

 , 𝜈 > ൬
𝜇௘

2𝜋𝜌଴
൰

ଵ
ଶൗ

൬
𝑘ଵ𝐻𝑘௫

𝜀
൰                                    (44) 

𝑖. 𝑒 𝜅 < 𝑚𝑖𝑛 ቆ𝐸𝜂,
𝐸𝜅 ′

𝐸′ ቇ , 𝜈 > 𝑚𝑎𝑥 ቈ
𝜌଴𝑘௫

ଶ

𝜇′ ൬
𝑐𝐻𝑘ଵ

4𝜀𝑁𝑒
൰

ଶ

 , ൬
𝜇௘

2𝜋𝜌଴
൰

ଵ
ଶൗ

൬
𝑘ଵ𝐻𝑘௫

𝜀
൰቉.                   (45) 

Thus < 𝑚𝑖𝑛 ቀ𝐸𝜂,
ா఑′

ா′ ቁ , 𝜈 > 𝑚𝑎𝑥 ቈ
ఘబ௞ೣ

మ

ఓ′ ቀ
௖ு భ

ସఌே௘
ቁ

ଶ

 , ቀ
ఓ೐

ଶగఘబ
ቁ

ଵ
ଶൗ

ቀ
௞భு௞ೣ

ఌ
ቁ቉ , therefore, are the 

sufficient conditions for the non-existence of overstability, the violation of which does not 
necessarily imply occurrence of overstability. 
 
5. CONCLUSIONS 
A layer of couple-stress fluid heated and soluted from below in porous medium is 
considered in the presence of uniform horizontal magnetic field to include the effect of 
Hall currents. The inclusion of Hall currents gives rise to a cross flow i.e. a flow at right 
angles to the primary flow in a channel in the presence of a transverse magnetic field [22] 
whereas [23] found that Hall effect produces a cross-flow of double-swirl pattern in 
incompressible flow through a straight channel with arbitrary cross-section. This 
breakdown of the primary flow and formation of a secondary flow may be attributed to the 
inherent instability of the primary flow in the presence of Hall current. [22] pointed out 
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that even if the distribution of the primary flow velocity were stable to external 
disturbances, the whole layer may become turbulent if the distribution of the cross-flow 
velocity is unstable. A similar situation occurs on the three-dimensional boundary layer 
along a swept-back wing. The presence of Hall current induces a vertical component of 
vorticity [24] and this may well be the reason for the destabilizing influence. The main 
conclusions from the analysis of this paper are as follows: 

 For the stationary convection case, the stable solute gradient and magnetic field 
postpones the onset of convection whereas, the Hall currents hastens the onset of 
convection. The medium permeability hastens the onset of convection whereas the 
couple-stress postpones the onset of convection for all wave numbers  

(1 + 𝑥) > 𝑀𝑥𝑐𝑜𝑠ଶ𝜃 , 
            which is normally satisfied as the Hall currents parameter 𝑀 is very small 
compared              to unity. 

 It is found that the stable solute gradient and the magnetic field (and corresponding 
Hall currents) introduce oscillatory modes in the system, which were non-existent 
in their absence.  

 It is observed that the system is stable for 
௚ఈ఑

ఔఉ

௉೗

ி
≤

ଶ଻ ర

ସ
 and under the condition 

௚ఈ఑

ఔఉ

௉೗

ி
>

ଶ଻గర

ସ
 , the system becomes unstable. 

 The case of overstability is also considered. The conditions 

𝜅 < 𝑚𝑖𝑛 ቆ𝐸𝜂,
𝐸𝜅 ′

𝐸′ ቇ , 𝜈 > 𝑚𝑎𝑥 ቈ
𝜌଴𝑘௫

ଶ

𝜇′ ൬
𝑐𝐻𝑘ଵ

4𝜀𝑁𝑒
൰

ଶ

 , ൬
𝜇௘

2𝜋𝜌଴
൰

ଵ
ଶൗ

൬
𝑘ଵ𝐻𝑘௫

𝜀
൰቉ 

are the sufficient conditions for the non-existence of overstability, the violation of 
which does not necessarily imply the occurrence of overstability. 
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