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1. INTRODUCTION  

An important class of engineering applications consists of frictional contact problems. Therefore, the 
contact models are of great importance in mechanical engineering, focusing on modeling and simulating 
complex interactions between solid surfaces, as well as managing stress and friction. Mathematical, mechanical 
and numerical state of the art on contact mechanics can be found in [1-13] and the references therein. The 
model considered in [14] was based on a viscoelastic constitutive law with long memory, a contact conditions 
combining normal compliance, memory term, unilateral constraint and a frictional sliding version of the 
Coulomb’s law.      

This paper presents a continuation of [14] and is devoted to the numerical solution of the contact 
model introduced in [15]. In this work, we study, from the numerical point of view, a quasistatic frictional 
contact problem between a viscoelastic body with long memory and an obstacle. The contact is modeled with 
normal compliance and is associated with unilateral constraints and with version of Coulomb’s law of dry 
friction. These nonstandard contact conditions could model the contact with the rigid foundation covered by a 
layer composed of a soft material.  

The main novelty of this model lies in the chosen the material's behavior with a viscoelastic 
constitutive law with long memory and in the boundary conditions describing the contact surface. The 
considered model leads to a new and more interesting mathematical model, involving new operators and new 
functionals. The analysis and numerical approach of this system represent the main trait of novelty of the 
present paper. To this end, we consider a fully discrete scheme to approximate the problem, involving finite 
difference discretization in time and finite element discretization in space. We treat the frictional contact 
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conditions by using a numerical approach based on the combination of the penalized method and the augmented 
Lagrangian method. Finally, we implement this scheme in a numerical code and present numerical simulation 
results on a model two-dimensional problem, illustrating the mechanical behavior related to the contact 
conditions.  

The paper is organized as follows. In Section 2, we present a brief description of the mechanical model 
and its variational formulation, which consists of a system coupling a variational inequality for the 
displacement field and a nonlinear equation for the stress field. The numerical solution used for solving the 
discrete problem is described in Section 3. Our main interest lies in Section 4 where we present numerical 
simulations in the study of a two-dimensional test problem. Finally, in Section 5 we present some conclusions 
and perspectives. 

2. THE MODEL 
  The physical setting is the following. A viscoelastic body occupies a regular domain 𝛺 ⊂ ℝௗ , 𝑑 =
2, 3 with a smooth boundary 𝜕𝛺 = 𝛤, divided into three disjoint measurable parts 𝛤஽ , 𝛤ே and  𝛤஼  such that 
𝑚𝑒𝑎𝑠𝛤஽ > 0. We use the notation 𝑥 = (𝑥௜) for a typical point in 𝛺 ∪ 𝛤 and we denote by 𝜈 = (𝜈௜)   the 
outward unit normal at 𝛤.  Here and everywhere in this paper 𝑖, 𝑗, 𝑘, 𝑙 run from 1 to 𝑑, summation over 
repeated indices is implied and the index that follows a comma represents the partial derivative with respect 

to the corresponding component of the spatial variable, i.e.  𝑓,௜ =
డ௙

డ௫೔
.  

We denote by 𝑆ௗ the space of second order symmetric tensors on ℝௗ or, equivalently, the space of 
symmetric matrices of order 𝑑. The inner product and the Euclidean norm on ℝௗ and 𝑆ௗ are defined by   𝑢. 𝑣 =

𝑢௜𝑣௜ , ||𝑣|| =  (𝑣 ⋅ 𝑣)ଵ/ଶ for 𝑢, 𝑣 ∈ ℝௗ and 𝜎. 𝜏 = 𝜎௜௝𝜏௜௝ , ||𝜏|| =  (𝜏 ⋅ 𝜏)ଵ/ଶ for 𝜎, 𝜏 ∈  𝑆ௗ. Also, we denote by 
𝑢 = (𝑢௜) ∊ ℝௗ the displacement vector, by 𝜎 = (𝜎௜௝) ∈  𝑆ௗ the stress tensor, by  𝜀(𝑢) = (𝜀௜௝(𝑢)) ∈  𝑆ௗ the 

linearized strain tensor, i.e.  𝜀௜௝(𝑢) = ൫𝑢௜,௝ + 𝑢௝,௜൯/2.  Also, we denote by 𝑢ఔ and 𝑢ఛ the normal and tangential 
components of 𝑢 on 𝛤 given by 𝑢ఔ = 𝑢 ⋅ 𝜈, 𝑢ఛ = 𝑢 −  𝑢ఔ𝜈. Finally, 𝜎ఔ and 𝜎ఛ will represent the normal and 
the tangential stress on 𝛤, that is 𝜎ఔ = (𝜎𝜈). 𝜈  and 𝜎ఛ = 𝜎𝜈 − 𝜎ఔ𝜈. 

The viscoelastic body is in equilibrium under the action of body forces of density 𝑓଴ and surface 
tractions of density 𝑓ே which act on  𝛤ே. The body is clamped on  𝛤஽; therefore, the displacement field vanishes 
there.  In the reference configuration, the body is in contact over 𝛤஼   with a deformable foundation. The 
frictional contact conditions are derived from the following five assumptions:  

 
a) The foundation is made by a rigid body covered by a layer made by of deformable material, 

say asperities. Therefore, the penetration is restricted, i.e.   
𝑢ఔ ≤ 𝑔,  (1) 

where 𝑔 > 0 represents the thickness of the deformable layer.  

b) When there is separation, then the reaction of the obstacle vanishes, Therefore, 
𝑢ఔ < 0 ⇒   𝜎ఔ = 0,   𝜎ఛ = 0. (2) 

c) When there is penetration, as far as the normal displacement does not reach the bound 𝑔, the 
contact is described with a normal compliance condition associated to the static version of 
Coulomb’s law of dry friction. Therefore, 

0 ≤ 𝑢ఔ < 𝑔 ⇒  ൞

−𝜎ఔ = 𝑝ఔ(𝑢ఔ),

‖ 𝜎ఛ‖ ≤ 𝑝ఛ(𝑢ఔ),

 −𝜎ఛ = 𝑝ఛ(𝑢ఔ)
𝑢ఛ

‖𝑢ఛ‖
 𝑖𝑓  𝑢ఛ ≠ 0.

            

 

(3) 

Here 𝑝ఔ(. ) and 𝑝ఛ(. ) are non-negative prescribed functions that vanishes for negative 
argument.   

 

d) When the normal displacement reaches the bound 𝑔, then the normal stress is larger than a 
given value 𝐹௕ > 0 and, moreover, friction follows the static Tresca law with the friction 
bound 𝐹௕. Therefore, 

𝑢ఔ = 𝑔 ⇒  ൞

−𝜎ఔ ≥ 𝐹௕ ,
‖ 𝜎ఛ‖ ≤ 𝐹௕ ,

 −𝜎ఛ = 𝐹௕

𝑢ఛ

‖𝑢ఛ‖
 𝑖𝑓  𝑢ఛ ≠ 0.

            

 

(4) 

e) To accommodate the conditions (3) and (4) we assume the compatibility 
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𝐹௕ = 𝑝ఛ(𝑔).  (5) 

Then it is easy to see those assumptions (1 − 5) can be written, equivalently, as follows: 

 ቐ

𝑢ఔ ≤ 𝑔,    𝜎ఔ +   𝑝ఔ(𝑢ఔ) ≤ 0,   (𝑢ఔ − 𝑔)൫ 𝜎ఔ +  𝑝ఔ(𝑢ఔ)൯ = 0,

‖ 𝜎ఛ‖ ≤ 𝑝ఛ(𝑢ఔ),   −𝜎ఛ = 𝑝ఛ(𝑢ఔ)
𝑢ఛ

‖𝑢ఛ‖
 𝑖𝑓  𝑢ఛ ≠ 0.  

 

            

 

(6) 

Condition (6) assume that the behaviour of the foundation is an elastic-rigid one (see [16]). 
 

The mechanical problem of frictional contact of the viscoelastic body with normal compliance and 
unilateral constraint may be formulated as follows. 
Problem 𝑃. Find a displacement field 𝒖 ∶  𝛺 × [0, 𝑇] ⟶ ℝௗ and a stress field 𝝈 ∶ 𝛺 × [0, 𝑇] ⟶ 𝑆ௗ, such that   

𝜎 = 𝒜𝜀(𝑢) + න ℛ(𝑡 − 𝑠)𝜀(𝑢(𝑠))𝑑𝑠
௧

଴

        𝑖𝑛 𝛺 × (0, 𝑇), 
    

(7) 

𝐷𝑖𝑣 𝜎 + 𝑓଴ = 0    𝑖𝑛 𝛺 × (0, 𝑇), (8) 

𝑢 = 0     𝑜𝑛 𝛤஽ × (0, 𝑇), (9) 

𝜎𝜈 = 𝑓ே     𝑜𝑛 𝛤ே × (0, 𝑇), (10) 

ቊ
𝑢ఔ ≤ 𝑔,    𝜎ఔ +  𝑝ఔ(𝑢ఔ) ≤ 0   

(𝑢ఔ − 𝑔)൫ 𝜎ఔ +  𝑝ఔ(𝑢ఔ)൯ = 0
               𝑜𝑛 𝛤஼ × (0, 𝑇), 

          
(11) 

ቊ
‖ 𝜎ఛ‖ ≤ 𝑝ఛ(𝑢ఔ)  

 𝜎ఛ = −𝑝ఛ(𝑢ఔ)
௨ഓ

‖௨ഓ‖
 𝑖𝑓  𝑢ఛ ≠ 0           𝑜𝑛 𝛤஼ × (0, 𝑇). 

          
(12) 

 
In (7 − 12) and below, in order to simplify the notation, we do not indicate explicitly the dependence 

of various functions on the spatial variable 𝑥 ∈ Ω ∪ Γ and the time variable 𝑡 ∈ [0, 𝑇], where 𝑇 > 0.  
Equations (7) represents the viscoelastic constitutive law with long memory in which 𝒜  (possible 

nonlinear) and ℛ  are the elasticity operator and the relaxation tensor, respectively, see [1]. Equation (8) is the 
equilibrium equation and 𝐷𝑖𝑣 denotes the divergence operators, i.e., 𝐷𝑖𝑣 𝜎 = ൫𝜎௜௝,௜൯; we use it here since we 
assume that process is quasistatic. Conditions (9) and (10) are the displacement and traction boundary 
conditions. Finally, conditions (11) and (12) represent the frictional contact condition with normal compliance 
and unilateral constraint associated to the Coulomb friction law, previously described in this section, see (6).  

To present the variational formulation of Problem 𝑃 we need some additional notation and 
preliminaries. We start by introducing the spaces 𝐻 = 𝐿ଶ(Ω, ℝௗ), 𝒦 = 𝐿ଶ(Ω, 𝑆ௗ). The spaces 𝐻 and 𝒦 are 
Hilbert spaces equipped with the inner products  (𝑢, 𝑣)ு = ∫ 𝑢 ⋅ 𝑣

ஐ
𝑑𝑥 and (𝜎, 𝜏)𝒦 = ∫ 𝜎 ⋅ 𝜏

ஐ
 𝑑𝑥, respectively. 

The associated norms in 𝐻 and 𝒦  are denoted by || ⋅ ||ு and  || ⋅ ||𝒦 , respectively.  
For the displacement fields, we introduce the Hilbert spaces 𝑉 = {𝑣 ∈ 𝐻ଵ(Ω, ℝௗ);  𝑣 = 0  𝑜𝑛  𝛤஽}. On 

𝑉, we consider the inner product and the corresponding norm given by  
 

(𝑢, 𝑣)௏ = ൫𝜀(𝑢), 𝜀(𝑣)൯
𝒦

 ,     ||𝑣||௏ = ||𝜀(𝑣)||𝒦    for all  𝑢, 𝑣 ∈ 𝑉.  (13) 

 We introduce the set of admissible displacements defined by 𝑈 = {𝑣 ∈ 𝑉; 𝑣ఔ ≤ 𝑔 𝑎. 𝑒.  𝑜𝑛  𝛤஼ }. We consider 
the trace spaces 𝑋ఔ = {𝑣ఔ\୻಴

  ∶ 𝑣 ∈ 𝑉}  and 𝑋ఛ = {𝑣ఛ\୻಴
 ∶ 𝑣 ∈ 𝑉}, equipped with their usual norms. Denote 

by 𝑋ఔ
∗ and 𝑋ఛ

∗ the duals of the spaces 𝑋ఔ and 𝑋ఛ, respectively. Moreover, we denote by  <⋅,⋅>௑ഌ
∗×௑ഌ

 and <⋅,⋅

>௑ഓ
∗×௑ഓ

 the corresponding duality pairing mappings.  
We consider the three mappings  𝑃 ∶ 𝑉 ⟶ 𝑉, 𝑗 ∶ 𝑉 × 𝑉 ⟶ ℝ  𝑎𝑛𝑑  𝑓 ∶ [0, 𝑇] ⟶ 𝑉, defined by 
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(𝑃𝑢, 𝑣)௏ = න 𝑝ఔ(𝑢ఔ)𝑣ఔ  𝑑𝑎
୻಴

,  
     (14) 

𝑗(𝑢, 𝑣) = න 𝑝ఛ(𝑢ఛ)‖𝑣ఛ‖ 𝑑𝑎
୻಴

, 
 (15) 

(𝑓(𝑡), 𝑣)௏ = න 𝑓଴(𝑡) ⋅ 𝑣 𝑑𝑥
ஐ

+ න 𝑓ே(𝑡) ⋅ 𝑣 𝑑𝑎,
୻ಿ

 
 (16) 

for all 𝑣 ∈ 𝑉. 
 
Then, performing integration by parts, we obtain the following variational formulation of Problem 𝑃 

in terms of the displacement and the stress fields. 
Problem 𝑃௏ .  Find a displacement field  𝑢 ∶ [0, 𝑇] ⟶ 𝑈 and a stress field 𝜎 ∶ [0, 𝑇] ⟶ 𝒦  such  for a.e. 𝑡 ∈

(0, 𝑇)  

 
A result of existence and uniqueness for the problem 𝑃௏  was provided in [15]. Based on this previous variational 
formulation, our goal in the next section is to provide the numerical analysis of this non trivial contact problem. 
 

3. NUMERICAL SOLUTION  
To describe the numerical method for the variational problem 𝑃௏ , we first introduce a fully discrete 

scheme to approximate the solution of problem 𝑃௏ . Let 𝑉௛ ⊂ 𝑉 be a linear finite element space on the domain, 
which is vanishing on the boundary 𝛤஽ , where  ℎ > 0 denotes the spatial discretization parameter. We now 
consider the spaces 𝑋ఔ

௛ = { 𝑣ఔ
௛

\୻಴
 ∶   𝑣௛ ∈ 𝑉௛} and 𝑋ఛ

௛ = { 𝒗ఛ
௛

\୻಴
 ∶   𝒗௛ ∈ 𝑉௛} equipped with their usual norm. 

We also consider the discrete space of piecewise constants 𝑌ఔ
௛ ⊂ 𝐿ଶ(Γ஼) and 𝑌ఛ

௛ ⊂ 𝐿ଶ(Γ஼)ௗ related to the 
discretization of the normal and the tangential stress, respectively, and let 𝑊௛ = 𝑌ఔ

௛ × 𝑌ఛ
௛.  

Next, the time derivatives are   discretized by using a uniform partition of [0, 𝑇], denoted by 0 = 𝑡଴ < 𝑡ଵ <
⋯ < 𝑡ே ≤ 𝑇. Let 𝑘 be the time step size, 𝑘 = 𝑇 /𝑁, and for a continuous function 𝑓(𝑡) let 𝑓௡ = 𝑓(𝑡௡).  
In addition, for a discretization of the history dependent operator in (7), we employ a modified trapezoidal rule 
to approximate the integral in the sense that on the last sub-interval [𝑡௡ିଵ, 𝑡௡], the left-point rectangular rule is 

applied (see [17]). The approximation of ∫ ℛ(𝑡௡ − 𝑠)𝜀(𝑣(𝑠))𝑑𝑠
௧೙

଴
 can be defined as follows: 

 

∫ ℛ(𝑡௡ − 𝑠)𝜀(𝑣(𝑠))𝑑𝑠
௧೙

଴
≈

௞

ଶ
 ℛ(𝑡௡ − 𝑡଴)𝜀(𝑣଴) + 𝑘 ∑ ℛ൫𝑡௡ − 𝑡௝൯𝜀൫𝑣௝൯௡ିଵ

௝ୀଵ +
௞

ଶ
 ℛ(𝑡௡ − 𝑡௡ିଵ)𝜀(𝑣௡ିଵ). (19) 

Finally, we note that the numerical treatment of the conditions (11) is based on the use of a 
penalization method for the normal compliance conditions part and an augmented Lagrangian method for the 
unilateral constraints part. For friction law (12), we use an augmented Lagrangian approach, see [18] and [19], 
respectively. To this end, we introduce the notation, where 𝜆ఔ = 𝜆 ⋅ 𝜈 and 𝜆ఛ = 𝜆 −  𝜆ఔ𝜈.   
        

Our discretized penalty and augmented Lagrangian based methods for unilateral contact problems in 
viscoelastics then reads: 
Problem 𝑃௏

௛௞ .  Find a discrete displacement 𝑢௛௞ = {𝑢௡
௛௞}௡ୀ଴

ே ⊂ 𝑉௛, a discrete  normal stress 𝜆ఔ
௛௞ =

൛𝜆ఔ೙
௛௞ൟ

௡ୀ଴

ே
⊂ 𝑌ఔ

௛ , and a discrete tangential stress 𝜆ఛ
௛௞ = ൛𝜆ఛ೙

௛௞ൟ
௡ୀ଴

ே
⊂ 𝑌ఛ

௛ such that for all 𝑛 = 1, ⋯ , 𝑁   

 

𝜎 = 𝒜𝜀(𝑢) + ∫ ℛ(𝑡 − 𝑠)𝜀(𝑢(𝑠))𝑑𝑠
௧

଴
, (17) 

൫𝜎(𝑡), 𝜀(𝑣) − 𝜀(𝑢)൯
𝒦

+ (𝑃𝑢(𝑡), 𝑣 − 𝑢(𝑡))௏ +  𝑗(𝑢(𝑡), 𝑣) − 𝑗(𝑢(𝑡), 𝑢(𝑡)) ≥ (𝑓(𝑡), 𝑣 − 𝑢(𝑡))௏  ∀ 𝑣 ∈ 𝑈.  (18) 
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൫𝒜𝜀(𝑢௡
௛௞), 𝜀(𝑣௛)൯

𝒦
+ න 𝑝ఔ ቀൣ𝑢ఔ೙

௛௞൧
௚

ቁ 𝑣ఔ
௛  𝑑𝑎

୻಴

+ න ቀ𝜆ఔ೙
௛௞ − 𝑟൫𝑢ఔ೙

௛௞ − 𝑔௛൯ቁ
ି

𝑣ఔ
௛  𝑑𝑎

୻಴

 

− න 𝑃஻൫௣ഓ(௨ഓ)൯൫𝜆ఛ೙
௛௞ − 𝑟𝑢ఛ೙

௛௞൯. 𝑣ఛ
௛  𝑑𝑎

୻಴

= (𝑓௡, 𝑣௛)௏ −  ൭
𝑘

2
 ℛ(𝑡௡ − 𝑡௡ିଵ)𝜀(𝑢௡ିଵ

௛௞ ), 𝜀(𝑣௛)൱

𝒦

 

− ൮𝑘 ෍ ℛ൫𝑡௡ − 𝑡௝൯𝜀൫𝑢௝
௛௞൯

௡ିଵ

௝ୀଵ

, 𝜀(𝑣௛)൲

𝒦

− ൭
𝑘

2
 ℛ(𝑡௡ − 𝑡଴)𝜀(𝑢଴

௛௞), 𝜀(𝑣௛)൱

𝒦

          ∀𝑣௛  ∈ 𝑉௛,

 
        
 
  

(20) 

−
1

𝑟
න ቀ𝜆ఔ೙

௛௞ + ቀ𝜆ఔ೙
௛௞ − 𝑟൫𝑢ఔ೙

௛௞ − 𝑔௛൯ቁ
ି

ቁ 𝛾ఔ
௛ 𝑑𝑎

୻಴

 

−
1

𝑟
න ൬𝜆ఛ೙

௛௞ − 𝑃஻൫௣ഓ(௨ഓ)൯൫𝜆ఛ೙
௛௞ − 𝑟𝑢ఛ೙

௛௞൯൰ . 𝛾ఛ
௛ 𝑑𝑎

୻಴

= 0           ∀𝛾௛ ∈ 𝑊௛ , 

   
 
 

(21) 

where [. ]௚  ∶  ℝ →  ℝ is the function defined by [𝑠]௚ = ൜
𝑠, 𝑠 ≤ 𝑔
0, 𝑠 > 𝑔

  and (. )ି is the negative part ((𝑠)ି =

𝑚𝑎𝑥{0, −𝑠}); also, 𝑃஻൫௣ഓ(௨ഓ)൯ is the projection on the ball 𝐵 of center 0 and radius 𝑝ఛ(𝑢ఛ) and  𝑟  is positive 

penalty coefficient.  
The numerical approximation of Problem 𝑃௏

௛௞ leads to the solution of a system of nonlinear equations. 
Next, the three unknowns (𝑢, 𝜆ఔ, 𝜆ఛ) of this nonlinear system is computed by using a generalized Newton 
method which leads, at each iteration, to the solution of a linear system, see [2], [12] and [13] for details. 

Finally, the discrete contact problems are solved employing the open-source finite element library 
GetFEM++ (see [20]). 

  
4. NUMERICAL SIMULATIONS 
  The physical setting is presented in Figure 1. Where, 𝛺 = (0, 1) × (0, 1) and 𝛤஽ = ({0} ×

[0 , 1] )⋃( {1} × [0 , 1]), 𝛤ே = [0, 1] × {1} and  𝛤஼ = [0, 1] × {0}.  On the part {0} × [0 , 1], the body is 
clamped and therefore, the displacement field vanishes there; the horizontal component of the displacement 
field vanishes on the part {1} × [0 , 1]. Vertical tractions act on the part 𝛤ே of the boundary.  The body is in 
frictional contact with a foundation on its lower boundary Γ஼ .  
We model the material’s behavior with a viscoelastic linear constitutive law in which the elasticity tensor 𝒜 
and the relaxation tensor ℛ satisfies 
 

(𝒜𝜏)௜௝ =
ா఑

ଵି఑మ  (𝜏ଵଵ + 𝜏ଶଶ)𝛿௜௝ +
ா

ଵା఑
𝜏௜௝ ,     1 ≤ 𝑖, 𝑗 ≤ 2,        𝜏 ∈ 𝑆ଶ, 

 (ℛ𝜏)௜௝ = 𝛼𝜏௜௝ ,       1 ≤ 𝑖, 𝑗 ≤ 2, 𝜏 ∈ 𝑆ଶ,           

Here 𝐸 is the Young modulus, 𝜅 the Poisson ratio of the material and 𝛿௜௝ denotes the Kronecker symbol. 
For the computation below we used the following data:  
 

𝐸 = 10ଶ 𝑁 𝑚ଶ⁄ , 𝜅 = 0.3, 𝛼 = 10ଶ 𝑁 𝑚ଶ⁄ 𝑠, 𝑓଴ = (0, −10) 𝑁 𝑚ଶ⁄ , 𝑓ே = (0, − 20) 𝑁 𝑚⁄ ,  

𝑃ఔ(𝑠) = 𝑟 𝑚𝑎𝑥{0, 𝑠} , 𝑟 = 10ଶ 𝑁 𝑚ଶ⁄ , 𝑔 = −0.05 𝑚, 𝑃ఛ = 𝜇𝑃ఔ , 𝜇 = 0.2, 𝑇 = 1 𝑠.  

 
 

Figure 1. Physical setting 
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In Figure 2, we show the influence of the memory term on the deformation of the body. We observe that 
for 𝑡 = 𝑇 = 1 𝑠, the deformable body has recovered most of its original shape as a collateral effect of 
the memory. Then, in Figures. 3 and 4, we show the reactions and displacements of the nodes of the 
contact surface at final time 𝑇 = 1 𝑠. The zone 𝐴𝐵 is a sliding zone formed by 13 nodes which are in a 
status of the normal compliance; there, the normal displacement is such that 0 < 𝑢ఔ < 𝑔 and the 
tangential displacement does not vanishes, i.e., 𝑢ఛ ≠ 0. In this zone, the friction follows the Coulomb 
law. The zone 𝐵𝐶 is a sliding zone formed of 19 nodes which are in a status of the unilateral condition; 
there, the normal displacement reaches the critical value of penetration 𝑔. In this zone, the friction 
follows the Tresca law with the friction bound 𝐹௕.   
 
 

  
 

Figure 2. Deformed meshes for t = 0.1 s (left) and t = T = 1 s (right) 
 

 
 

Figure 3.  Frictional contact reactions on Γେ 
 

Figure 4.  Displacement field on  Γ஼  
 

 
 

5. CONCLUSION 
A new model of the contact process between a viscoelastic body and the foundation is numerically studied in 
this paper. The novelties arise in the fact that the material behavior is described by a viscoelastic constitutive 
law with long memory and the contact law with normal compliance and unilateral constraint is associated to a 
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version of Coulomb's law of dry friction. A fully discrete scheme was used to approach the problem and a 
numerical algorithm which combine the penalty approach with the augmented Lagrangian method was 
implemented. Moreover, numerical simulations for a representative two-dimensional example were provided. 
We conclude that our simulations above underline the effects of the memory tem on the frictional contact 
process. Performing these simulations, we found that the numerical solution worked well and the convergence 
was rapid. This work opens the way to study further problems with other boundary contact conditions including 
dynamic effects 
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