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              Performance of CMOS technology has been affected in 

nanosystems due to power dissipation, area, and reliability 

functionalities. A research initiative which investigates other possible 

systems with related capacities is QCA. In this paper, QCA 

nanotechnology was used to create a 1-bit comparator. These circuits 

are easy to create and do not require any crossovers. The proposed 

design is extremely efficient in expressions of delay, cell count, area 

and quantum cost, which improves the performance within the range 

of 74.81% to 99.87% in terms of quantum cost. As a result, proposed 

designs are often found in various digital logics that require a small 

amount of space and low power consumption. 

 

Keywords: 

Quantum dots  

Cellular Automata  

Comparator  

Quantum cells  

Edge computing 

This is an open access article under the CC BY license. 

 

Corresponding Author: 

V. Satyanarayana,   

Sree Vidyanikethan Engineering College, 

Tirupati-517507. 

Email: satyab.tech4@gmail.com 

 

 

1. INTRODUCTION  

 The reliability of efficient transistor Semiconductor devices has strengthened the driving force behind 

the semiconductor industry's accelerated growth, chip density, lower power dissipation, and faster integrated 

circuit switching speeds. The quantum effect is significant in the operation of transistors in the deep 
nanometer environment. Other aspects with deep nanometer transistor circuit architecture include high 

energy consumption, power losses, and electron leakage [1-3]. It includes present and prospective application 

of digital systems; developing nanotechnologies are an exciting investment opportunity [2, 5, 6]. QCA is a 

fast-evolving technology for computational logic designs as well as solutions to CMOS in nanosystem issues 

[4, 7]. Since QCA can be built using molecules, its scalability is much preferable than that of silicon-based 

transistor scaling for CMOS.  

A. QCA Nanotechnology 

        Nanotechnology based on QCA is one of the most efficient technologies being explored and 

researched by researchers. In 1993, C. S. Lend [1] was the first to suggest the concept of QCA. In order for 

the measurement and transformation process [4,7] the structure between cell charges is required and QCA is 

included in the cell concept. The elimination of cell contact wires or interconnection is another benefit of 

QCA electronic circuit design. There are four quantum dots or wells in each cell as shown in figure 1. In 
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this process, only two electrons are limited. Quantum tunnel junctions separate these quantum dots. The 

electron flow is caused by coulombic interaction between the cells. Electrons only arise at antipodal sites, 

ie. diagonally, due to coulombic repulsion, resulting in minimal repulsion. These electron residing positions 

eventually lead to the binary ‘0' and binary ‘1' polarisation states. The polarisation states of QCA cells are 

represented in Figure 2. In QCA [3, 8], energy dissipation is negligible during propagation and state 

transition, resulting in a low energy dissipation as compared to CMOS technology. 

 

 

Figure 1. Schematic of QCA Cell. 

Figure 2. Binary QCA Cells. 

 

B. QCA in Clocking 

       In addition, QCA circuit has four phases, each of which has a 90 degree differential between the circuit 

and only two clocking states: 'LOW' and 'HIGH.' The quantum tunnelling of electrons to other points in an 

input phase of a clock at certain stages by raising or lowering the barrier potential. Pipelining is a 

phenomenon that allows data to be transmitted. Switch, release, relax, and hold  are the four steps of this 

clocking. Since the QCA cells are unpolarized at first, they have a low potential.  

 

 

Figure 3. Different clock phases in QCA. 

       During the switch cycle, the polarisation of a QCA cell is largely determined by the polarisation of 

adjacent cells, and the potential vitality of the electrons rises exponentially. Furthermore, no state change 

happens when the electron exceeds its full potential viability at the end of the switch stage. Cells maintain 

their previous state throughout the keep process, and their potential viability remains high. The 

electrons potential energy continues to decrease during the release and relaxation phase, gradually leading to 

null polarisation [4, 6, 7]. Figure 3 shows different clock stages. 

 

C. QCA with Crossovers 

In circuit design, QCA wires crossover is usually used for simpler designs. Two forms of crossovers have 

been found in QCA. They are coplanar and multilayer crossovers. To crossover the wires, coplanar crossover 

is carried out in a single plane using direct and rotated cells is as shown in fig. 4, since there is no interaction 

between the cells or the use of alternative clock zones for crossovers. The other is a multilayer crossover, as 
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shown in figure. 5, which has more than one layer. Although multilayer crossover is more difficult to 

design than coplanar crossover, it is preferred because it reduces the number of cells and circuit area [1]. 

However, coplanar is preferred in terms of fabrication possibility. 

 

     Figure 4. QCA crossovers (a) with rotated cells, (b) with clock0 and clock2, (c) with clock1 and 

clock3. 

 

Figure 5. QCA with multilayer crossover. 

 

2. 1-BIT COMPARATOR 

 

       Figure 6. Logic diagram for a one-bit Comparator. 

    Binary comparators are used for optical comparators. Binary bits are measured by the 1-bit comparator to 

decide if one is greater and equal or less. Logic diagram of a one-bit comparator shows above. 

                                       

                        (2) 

                                       

Here Y1, Y2 and Y3 are output equations. This one-bit comparator logic circuit appears in figure. 6 and 
the Truth Table is also shown in below. 
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                                               Table I. Truthtable for 1-bit comparator. 

 

A. Literature Review 

   To analysis the various 1-bit comparators proposed in QCA, a  literature review was conducted.  A few 

designs that have been proposed are seen below figures. Other architectures build the comparators with 

reversible gates[2-6], but they use a multilayer or rotating cell solution with a very high cell count[4]. The 
conceptual designs are configured with only majority gates, but this usually leads to use the more no. of 

fixed cells of polarization which is inefficient from a design technology [4,5]. Figure 8 hires 87 cells to play 

the role of a 1-bit comparator. Figure 9 shows a multilayer architecture with fewer fixed polarization cells to 

achieve the desired goal with cell count of 73 cells and less number of cells. Many researchers implemented 

QCA comparator circuits earlier. In Ref[1] a coplanar QCA Comparator Circuit with 0.182 μm2 and 117 cells 

was constructed, as shown in Figure.7. A single-bit comparator was proposed in Ref. [2]. A multi-component 

structure with a 0.11μm2 and 87 QCA cells as shown in figure.8 will be required for this QCA comparator 

circuit. In Ref[3] a multi-layered QCA Comparator Circuit with 0.06 μm2 and 73 cells was constructed, as shown 

in figure.9. 

 

Figure 7. 1-bit Comparator with 117 cells. 
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Figure 8. 1-bit Comparator with 87 cells. 

 

 

Figure 9. 1-bit Comparator with 73 cells. 

 

B. Existing Design 

     A few 1-bit comparator designs are shown in figures 10,11, but the majority of these have a large area of 
cells and cell count. Various concept crossovers are also used in these designs. Moreover, the circuits latency 

is higher, leading to a higher quantum cost. Figure 10 shows a one-bit comparator with no crossover based 

on these conditions. The simulation results from the QCA Designer 2.0.3 tool, as seen in figure.12, can be 

used to check the design's effectiveness. 

 

Figure 10. QCA Schematic Design-1 for 1-bit Comparator with 55 cells. 

 

Figure 11. QCA Schematic Design-2 for 1-bit Comparator with 42 cells. 
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      There are 55 cells in the design, with a total area of cell is 0.0669 μm2. The XOR gate, which has only 42 

cells and area of cell is 0.0407 μm2, was optimised to produce another architecture, as seen in fig. 10. 

 

C. Proposed Design 
     The 1-bitcomparator design in fig.10 has a large cell area and cell count. In addition, the circuits' latency 

is higher, resulting in a higher quantum cost. This paper proposes a new 1-bit comparator without using 

crossovers as seen in fig.12. The simulation results from the QCA Creator v2.0.3 tool can be used to verify 

design's accuracy, as seen in figure.13. 

 

 
 

 Figure 12. QCA Schematic for 31 cells 1-bit Comparator.   

         The proposed schematic design has 31cells with the total area of  cell is 0.03μm2.   

D. COMPARISON TABLE 

 

E.  ENERGY CALCULATION USING QDE 

 

 If qca cells are separated for each clock cycle, they form a "bath" of energy, as described in qde. 

ebath is the total amount of energy transmitted to the qca'bath.' As a result, the sum of all ebath energies will 
be used to calculate total energy dissipation. The 3 main components of energy dissipation are eck, eev, and 

eio. eck is used to transfer energy to clocks, eev is used to transfer energy to the atmosphere, and eio is used 

to transfer energy to neighbouringqca cells. It's worth noting that ebath = eev, and this is a contradiction. The 

equation is eio = eout, where ein is the amount of energy entering the cell and eout is the amount of energy 

exiting the cell.There may be an error in the measurement of electricity, which can be expressed as err = 

eev(eck + eio). If the error is negative, the energy has been converted from the three components previously 

discussed. Average loop energy dissipation is 1.50e-003e ev, with minute error -1.48e-004e, while the 1.65e-

002e-bit comparators are used with a negligible error of -1.63e-003ee ev and with total energy. The qde tool 

was used to calculate the energy dissipation of each coordinate. 
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3.  RESULT 

 

Figure 13. Waveform  simulation  for  the QCA 1-bit comparator 

4.   CONCLUSION 

      According to the result  the comparator design is proficient in terms of  delay, area, quantum cost, cell 

count andit achieves performance of 72.91% to 99.87% over current proposed design, there are many designs 

to consider in expressions of quantum cost. As a result, the proposed design is used in a variety of technology 

with negligible space and low power consumption. 
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