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 This work studies the flow of a non-Newtonian power-law fluid with viscous 

dissipation through a pipe with a variable expand ratio (B). The influence of 

the power law index (n), expand ratio (B), Darcy number (Da) and Brinkman 

number (Br) on heat transfer and thermodynamics irreversibility is 

investigated. Equations of the problem are solved numerically using 

COMSOL software. Results show that heat transfer and entropy generation 

are deeply affected by selected governing parameters. Both thermal entropy 

generation and average Nusselt number are maximal at low power index and 

at high medium permeability. Power index effect is insignificant at relatively 

low Darcy number. Considering viscous dissipation with high Brinkman 

number, heat transfer direction can be reversed at moderate Darcy number 

and high-power index. 
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1. INTRODUCTION  

 

Newton's law of viscosity is violated by non-Newtonian fluids; their viscosities depend on the 

stresses applied. Non-Newtonian fluid flow is known to be important in many practical applications such that 

food industry, oil drilling, pharmaceuticals, advanced materials manufacturing, protective equipment design, 

medicine etc. This illustrates the versatility of these fluids and their impact in many aspects of our daily lives 

from industry to scientific research. Their unique behavior offers a wide range of possibilities for innovative 

and practical applications. In this context, considerable interest focused on non-Newtonian fluid flow, with 

and without, viscous dissipation. Numerous papers have been published on this subject. 

Thermal convection heat transfer to blood steadily flowing in a pipe was investigated by Dumas et 

al. [1], The velocity field was distributed analytically, while the temperature field was determined 

numerically using the finite-difference method to solve the energy equation for two thermal conditions 

(uniform parietal temperature and parietal heat flux density). Blackwell [2] proposed a numerical solution of 

Graetz problem by considering circular ducts submitted to uniform parietal temperature the viscous 

dissipation and axial fluid conduction were neglected. The same problem was studied by Johnston [3] taking 

into account the axial conduction. Basu et al. [4] explored the impact viscous dissipation on heat transfer; it 
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was found that viscous dissipation considerably affects the flow especially at the inlet zone. Min et al. [5,6] 

analytically and numerically examined the hydrodynamic and simultaneous development of laminar flow of a 

Bingham fluid in a cylindrical pipe. A good agreement between the digital and analytical solutions was 

found. non-Newtonian laminar fluid flow in a circular pipe was numerically explored by Vradis et al. [7]. 

Recently, Khatyr et al. [8] and Nouar [9] focused on this problem by considering impact of the dissipation 

function on the thermal field. Afrasiab [10] examined natural convection in a cavity saturated by a power-law 

fluid and heated from the bottom by   heat source. He showed that increasing the Rayleigh number leads to 

enhancing the natural convection in the cavity which is more pronounced at shear thinning fluids (n<1). 

Houssem and Mohamed [11] exhibited a numerical study based on the resolution of the Ostwald fluid flow 

equations around a heated cylinder. They pointed the presence of a recirculation zone behind the obstacle 

which is affected by buoyancy forces. Yazdani et al. [12] explored the effect of the power index on entropy 

generation in a saturated trapezoidal cavity. Tayari et al. [13] investigated created entropy in a Darcy-

Brinckman inclined porous channel. They found that entropy production reaches extreme values for well-

defined channel inclinations. Neffah et al. [14] studied heat and mass transfer with chemical reaction in an 

anisotropic porous channel saturated by a non-Newtonian fluid. Effects of the characteristic parameters of the 

medium and the chemical reaction were examined.  

Flows in widening/shrinking pipes are important hydrodynamic phenomena, as they are present in 

many engineering applications. Changing the diameter of a flowing pipe leads to complex variations in fluid 

velocity, pressure and heat transfer, with significant impacts on the efficiency of transport systems. To better 

understand these flows, numerous studies have been carried out and published. Alleborn et al. [15] used a 

channel with sudden expansion to study the flow of an incompressible fluid. The study was developed by 

considering limit cases for geometric and flow parameters and by comparing numerical results with 

analytical solutions. Bifurcation phenomena was investigated Drikakis [16], [17] for compressible [16] and 

incompressible flow [17] the obtained results was  in good agreement with the work by Battaglia et al. [18]. 

Cherdron et al. [19] experimentally investigated asymmetrical flows that form in symmetrical geometries 

with sudden expansion. The specific conditions that give rise to asymmetric flow and the causes of this 

asymmetry were investigated. The same phenomenon was studied by Fearn et al. [20]. The study showed that 

the flow becomes time-dependent due to three-dimensional effects. Mahfoud et al. [21] considered the 

isothermal flow of a non-Newtonian fluid in a rectangular pipe with an abrupt contraction of ratio 4 at 

different Reynolds number values and presented correlations for axial velocity. A parallel multigrid flow 

solver was employed by Schreck and Schäfer [22] to study bifurcation in sudden channel expansions. The 

study deals with the efficiency of the numerical method and the effect of the problem geometry on the 

bifurcation phenomena. 

To the best of our knowledge, no valuable publications about fluid flows including the non-

Newtonian character, presence of singularities and the existence of viscous dissipation have been confronted. 

In this perspective, this work is carried out in order to study a power law fluid flow, subjected to viscous 

dissipation, through a pipe with variable expand ratio. 

 

II. Mathematical formulation 

The system under consideration consists of a non-Newtonian fluid flowing through a narrowing-

widening porous channel. The channel is of length L, and the widened and narrowed channels are of height H 

and H' respectively. The channel has an aspect ratio of A=L/H (the ratio of the total length of the channel to 

the height of the wide pipe) and an expand ratio of B=H'/H, defined as the ratio of the height of the narrowed 

section to that of the wide section. The narrowing is not abrupt, so the two compartments (wide and 

narrowed) are linked by sloping walls at an angle (α) to the horizontal. Only the upper and lower walls of the 

wide parts of the channel are heated. The remaining walls are assumed to be adiabatic. The fluid enters from 

the left with a constant cold temperature Tc and a constant horizontal velocity U0. The characteristics of the 

channel studied are shown in figure1. The aspect ratio A is considered to be constant and  equal to 6, while 

the expand ratio takes the values 0.75, 0.5 and 0.25. The narrowed channel length is constant, so that a 

variation in the B-ratio systematically induces a variation in the angle of inclination (α such that tg(α) = 1-B) 

of the inclined wall. 
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Figure 1: Geometry of the studied channel 

 

 

 

Following Shenoy [13] and Neffah et al. [5], conservation equations of mass, momentum and energy are 

respectively: 
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With:|𝑉| = √𝑢2 + 𝑣2                                                                                                       (5) 

 

The power law model stress tensor is : 

 

𝜏̿ = 𝜇∗|�̇�|𝑛−1�̇�                                                                                                                 (6) 

with 
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By using the dimensionless variables below: 

𝑋 =
𝑥

𝐻
 ;𝑌 =

𝑦

𝐻
; 𝑃 =

𝐻2𝑝

𝜌𝛼2; 𝑈 =
𝑢

𝜀𝑈𝑖
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𝑣
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                                                   (10) 

The governing dimensionless equations are: 
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+
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The dimensionless parameters involved in the above equations are: 
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III. Entropy generation 

By using the transformations in Eq.10, the dimensionless total entropy production expression 

becomes [14]: 

α 

L 

H 
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∂𝜃
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2
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∂𝜃
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2

) +
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(17)                   

Where   𝐵𝑟∗ =
𝜇∗𝑈𝑖

𝑛+1

𝑘∆𝑇𝐻𝑛−1, Ω1 =
T0

ΔT
ε

n2+1

n+1  and  Ω2 =
T0

ΔT
εn+1                                             (18)                                                

In Eq. (13), the first term is the thermal irreversibility (Sth). The second and the third traduce 

respectively the Darcy (Sdv) and viscous (Sfv) irreversibilities. They are given by:  

𝑆𝑡ℎ = (
∂𝜃.

∂X
)
2

+ (
∂𝜃.

∂Y
)
2

                                                                                                           (19) 

𝑆𝑑𝑣 =
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)
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The dimensionless total created entropy is the integral of Eq.17, over the entire channel.  

𝑆𝑇 = ∬ 𝑆𝑡,𝑙 𝑑𝑥𝑑𝑦
1 𝐿/𝐻

00
                                                                                                          (22) 

The mean Nusselt number at the bottom hot wall is : 

𝑁𝑢𝑚 = −
1

𝐿
∫

𝜕𝜃

∂Y

𝐿

0
 dx                                                                                                          (23) 

IV. Numerical procedure  

By considering the opted boundary and initial conditions, a COMSOL numerical code was 

established in order to solve the governing dimensionless equations. COMSOL Multiphysics use F.E.M. 

method to discretize the governing equations of the flow and create the numerical model in space. This 

method is well suited to modeling and simulating complex problems involving several physical phenomena. 

To solve this system of equations, COMSOL uses advanced numerical methods such as the conjugate 

gradient method, Newton-Raphson method, or other iterative solving techniques. To test the accuracy of the 

present work the found results were validated with those obtained by a FORTRAN code previously 

developed by members of our Laboratory at the National Engineering School of Gabès-Tunisia (Magherbi et 

al. [11], Tayari et al. [4]) and with other published work, in the case of a channel with expand ratio equal to 

unity. Tables 1 and 2 give maximum dimensionless velocity component and averaged Nusselt number 

compared with other results respectively. As can be seen, our results agree well with those reported in the 

literature. 

Table 1 : Maximum of x-velocity component (Pr=0.70, Re=100) 

Da This 
study 

Taya
ri et al. 

Mahmud 
and Fraser 

Karamallah 
et al. 

1e-9 
0.001 
0.01 
0.05 
0.1 

----- 
1.080 
1.170 
1.330 
1.410 
 

1.020 
1.060 
1.230 
1.400 
1.440 

        1.010 
        1.060 
        1.110 
        1.260 
        1.330 
 

          ----- 
          1.090 
          1.300 
          ------ 
          1.550 

 

 

Table 2 : Mean Nusselt number (Pr=0.70 , Re=1.0) 

Da    This 
study 

   
Tayari et al. 

  Mahmud 
and Fraser 

  (Num. 
study) 

Karamallah et 
al. 

(Anal. Study) 

0.01 
0.05 
0.1 

101.25 
21.532 
11.227 

100.324 
21.193 
10.785 

99.936 
21.213 
11.098 

103.35 
22.119 
11.587 

 

 

V. Results and discussion 

Due to considerable number of variables and operating parameters, we have limited our work to  the 

influence of the power law index (n), expand ratio (B),  Brinkman (Br) and Darcy (Da) numbers on the flow. 

In this same context, we have neglected the viscous contributions to the thermodynamics irreversibility (in 

Eq.17), and accordingly the total created entropy (𝑆𝑇) is reduced only to the thermal cause (𝑆𝑡ℎ). 

V.1. Effect of the power law index and expand ratio. 

In this section, Pr, Re and Da are fixed to 70, 50 and 10-3, respectively. Figure2  illustrates the 

variation of (𝑆𝑇)  and (Num) versus power  law index for different expand ratio. In absence of heating by 
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viscous dissipation effects one can see that thermal created entropy and Nusselt number are two relatively 

close quantities.  

 

 

a)  

b)  

Figure 2 : Variation of: a) Num ; b) ST with the power-index for selected expand ratios            

(Da=10-3, Pr=70 et Re=50) 

As seen in Fig.2a, For constant B, Num is maximal for shear-thinning fluid (n=0.4). For given shear 

rate, the apparent viscosity of the non-Newtonian fluid diminishes when n decreases. Therefore, at low n, the 

viscous forces are weak and then do not affect the inertial forces and the convection motion. In this case, 

thermal gradients are significant, generating important heat transfer and  thermal irreversibility (Fig.2a-b). It 

is observed that Num decreases as n rises and tends towards a minimum value at high n. This result is 

consistent with the work of Afrasiab [10]. Certainly, increasing the power index (from 0.4 to 1.8) leads to a 

raise of the fluid apparent viscosity at given shear rate. When increasing n, non-Newtonian fluid  character 

progress from a shear thinning  to a shear thickening one, which leads to a raise of the fluid apparent 

viscosity. Thus, it becomes more difficult to move which reduces convection phenomenon and consequently 

heat transfer and entropy generation decrease.  Note that the decrease of Num  with n is noteworthy. By way 

of indication and for an aspect ratio B=3/4, the reduction in the production of thermal entropy is 66% when n 

varies from 0.4 to 1.8. Additionally, and for fixed n, one can see from Fig.2 that the influence of the expand 

ratio B on Num and ST is highly significant for shear-thinning fluid, slight for Newtonian fluids and almost 

absent for shear thickening fluids (n˃1). In this context, we estimate a decrease in entropy production equal 

to 12%, 2% and 0.7% for a power index equal to 0.4, 1 and 1.8 respectively when the aspect ratio is increased 

from 0.25 to 0.75.  
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In order to better observe heat exchanges between the fluid and the active channel walls (wide part), 

the isotherms for n=0.4 and 1.8 are shown in figure 3. In the case of a shear thinning fluid (n=0.4), Fig.3.a 

shows the appearance of a thermal boundary layer reflecting significant heat transfer between the fluid and 

the hot walls of the two wide compartments. Thermal gradients are significant, giving rise to significant 

Nusselt number and entropy production. Note that isotherms in the vicinity of the hot walls of the left-hand 

compartment are tighter than those of the right-hand compartment, indicating more intense heat transfer and 

irreversibilities in this region of the pipe.  

 
a) n=0.4 

 
b) n=1.8 

Figure 3 : Isotherms variation with the power-index for selected aspects ratios 

(Da=10-3, Pr=70 et Re=50) 

As we increase n (Fig.3b), we see a spreading of the isotherms at the hot wall levels for both 

compartments, heralding a reduction in thermal gradients and consequently a simultaneous decrease in Num 

and ST. The absence of thermal gradients in the shrunken central part induces the absence of heat transfer and 

therefore of entropy production in this part. One can note that, for shear thinning fluid most of the thermal 

energy received by the fluid is conveyed in the longitudinal direction (direction of flow). Whereas for n=1.8, 

part of this energy is transversely transmitted to the core of the fluid. This can be explained by the fact that by 

increasing the power index to 1.8, the viscosity of the fluid becomes significant, inducing the increase of 

viscous friction forces and a reduction in inertia forces. Thus, heat transfer by conduction becomes more 

significant in the transverse direction leading to an increase in fluid temperature at the center of the flow. 

This result is clearly illustrated by Fig. 4, giving  evolution of local fluid temperature along the channel axis 

(in y=0.5) for n=0.4, 1 and 1.8. 

 
Figure 4 : Variation of local temperature along x-coordinate at y=0.5 

for selected power-index (Da=10-3, Pr=70 et Re=50) 

Note from this figure that the temperature at the center of the flow increases as soon as the fluid 

enters the wide hot part of the channel where it receives heat from the top and bottom heated pipe walls. At 

the narrowed adiabatic part, the temperature of the fluid remains quasi-constant before increasing again while 

penetrating in the wide straight heated part of the channel. 

V.2. Effect of the power law index and Darcy number. 
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Fig. 5 illustrates the effect of n and Da on Num calculated on the bottom active channel walls 

(Fig.5.a) and ST inside the entire channel (Fig.5.b). A similar behavior of created entropy generation and 

mean Nusselt number is obtained. 

 
        a) 

 
          b) 

 

Figure 5: Variation of : a) Num; b) ST with the power-index for selected Darcy number. 

(Pr=70 et Re=50, Br=0 ;B=0.75) 

As it can be seen, for low Da (≤10-6), the power index has no significant effect on Num. In fact, low 

permeability of the porous medium reduces fluid mobility thus, convection effects are insignificant in favor 

of a dominance of transverse heat transfer conduction between the hot walls and the non-Newtonian fluid. In 

this context, the system is compared to a solid matrix, and consequently a variation in the power index 

remains with no appreciable effect on the flow. As Darcy number increases, effect of power index on Nusselt 

number becomes more important. A decrease in Nu as the power index increases is obtained i.e., from 

thinning to thickening behavior. For shear-thickening fluids (n˃1), fluid viscosity increases with shear rate, 

especially near the walls of the system under study. This will generate an increase in viscous forces, which in 

turn will decelerate the fluid and reduce heat transfer as well as entropy production. We can conclude that an 

increase in (n) has a similar, but less significant, effect than a decrease in Da. It should also be noted that the 

greater the Da, the greater the decrease in Nu. In this context, we can cite a decrease in Nu of almost 40% 

when n goes from 0.4 to 1.2. The effect of Da is more significant, in terms of heat transfer and 

thermodynamic irreversibility, for shear-thinning fluids. By way of example, Fig. 5b shows an increase in 

entropy production of almost 70% for n=0.4 versus 50% for n=1.2 when Da is increased from 10-6 to 10-3. 
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Figure 6: Variation of x-component velocity (U)with x for selected n 

( Pr=70 et Re=50, B=0.75, Br=0) 

 

Fig. 6 gives the variation of the horizontal component of velocity along the median plane (y=0.5) for 

different n. Tracing is reduced to the narrowed part of the channel (2≤ x ≤4). Two values of Darcy numbers 

are used, namely 10-3 and 10-6. For a fixed power index, figure 6a (for Da=10-3), shows that fluid velocity 

increases once it enters the narrowed part of the channel. This increase is certainly due to the Venturi effect 

inducing an acceleration of the fluid accompanied by a decrease in pressure. This figure reveals also that an 

increase in n is accompanied by a decrease in the velocity of the fluid in the convergent and that 

consequently the venturi effect becomes less pronounced for shear-thickening fluids. 

Indeed, for the same shear rate, an increase in n (transition from thinning to thickening character) 

induces an intense increase in the fluid apparent viscosity, mainly close to the walls of the convergent where 

the shear rate is moderately high. This behavior results in an intensification of the drag forces exerted on the 

fluid from the porous solid matrix and the walls of the enclosure.  Consequently, fluid motion in the channel 

becomes more difficult, reducing its longitudinal velocity.  The same phenomenon is observed and can be 

interpreted in the same way for Da=10-6, except that in this case we observe the effect of decreasing 

permeability impacting a significant reduction in the horizontal component of velocity. For n=0.4, the 

maximum dimensional velocity in the convergent zone (at x=3) is 1.47 for Da=10-3 versus 1.34 for Da=10-6.  

At low permeability (Da=10-6), the shear-thickening effect is added to the decelerating effect of the porous 

matrix, leading to a more expressive decrease in fluid velocity in the convergent zone and a reduction in the 

venturi effect. 

V.3. Effect of the Brinkman number  

This part concerns the impact of the Brinkman number (Br) on Num near active bottom channel 

walls as well as on ST. The Prandtl, Reynolds and Darcy numbers are fixed at 100, 50 and 10-3 respectively. 

The cavity expand ratio B is invariable and set to 0.5. Two power index values are used related to thinning 

and thickening fluid characters (n=0.4 and n=1.4). The Brinkman number is varying from 0 to 1. Fig. 7 

shows the variation of ST and Num with Brinkman number for shear-thinning fluid (n =0.4). 
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As shown in Fig.7, total created entropy is maximal in the absence of viscous dissipation (Br=0), 

then decreases as the Brinkman number increases. 

Parallel and in the same way, we observe a slight decrease of almost 1.3% in the average Nusselt 

number as Br increases from 0 to 1. In fact, for Br = 0, as the cold fluid enters the porous channel two heat 

flows from the hot upper and lower walls of the channel induces the fluid to heat up and simultaneously 

increase in temperature.  

 
Figure 7: Total  entropy production and average Nusselt number Vs Br (n=0.4) 

 

In this context, heat transfer between the hot walls of the porous channel and the fluid decreases 

progressively. The fluid tends toward a thermal equilibrium state with the active walls of the channel, 

depending on Re, Da and the pipe length. An increase in the Brinkman number causes in intrinsic heating 

inside the fluid as a result of viscous dissipation effects. Heat transfer between active walls and the fluid is 

less intense in this case, leading to a reduction in thermal gradients and consequently in Num and ST. It should 

be noted that the irreversibility decrease for shear-thinning fluid is insignificant and that in this case we count 

a 2% reduction in total entropy generation when Br goes from 0 to 1. This can be interpreted by a weak effect 

of viscous dissipations following a reduction in the apparent dynamic viscosity of the fluid. To more explain 

this result, we have plotted in figure 8 the variation of  the temperature at the center line of the flow versus x 

(for y=0.5). As it can be seen, once inside the channel, the fluid temperature increases in the wide left-hand 

and right-hand channels and practically stabilizes in the adiabatically narrowed section.  

 

 
 

Figure 8 : Variation of the fluid temperature at the center line 

of the flow with x (y=0.5 and n=0,4) 
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Figure 8 shows that an increase in Br tends to a slight raise in the fluid temperature, and 

consequently in its internal thermal energy. As a result, heat transfer between the fluid and the hot walls of 

the channel is reduced, leading to a decrease in thermal gradients and, consequently, in both the average 

Nusselt number and total entropy production.  

 
Figure 9 : Local Nusselt number variation (Nu) with x for different Br 

(n=0.4 ; B=0.5) 

Figure 9 illustrates the change in the local Nusselt number near the lower active walls of the channel 

for n=0.4. From this figure one can note that local Nusselt number exhibits a discontinuity along the adiabatic 

walls, it takes a maximum value at the entrance to the left active compartment and then decreases until it 

reaches its end. These observations indicate the existence of heat transfer between the active walls of the 

wide left-hand part of the channel and the fluid, which steadily decreases as the fluid approaches the 

constriction and results in an increase in fluid temperature. In the adiabatically constricted section, where 

there is no heat transfer, the fluid temperature is kept virtually constant. Once the fluid reaches the right-hand 

active compartment, local Nusselt number resumes practically the same variation as for the left-hand 

compartment, giving rise to the same interpretations.  

 

 
Figure 10: Total entropy generation and average Nusselt number Vs Br 

(B=0.5, n=1.4) 

Evolution of ST and Num versus Brinkman number is exhibited in Fig.10 in the case of shear-

thickening non-Newtonian fluid (n=1.4). Similar situation to the previous case is obtained, related to the 
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average Nusselt number variation with the Brinkman number. In this case (n=1.4) the diminution of Num is 

more pronounced, and we count a decrease by almost 70% as Br grows from 0 to 1. This is mainly due to an 

increase in the thermal internal energy of the fluid, which raises its temperature and thus reduces heat transfer 

between the channel active walls and the fluid. The most significant anomaly concerns the behavior change 

in total thermal created entropy as a function of Br, which consists of a decrease followed by an increase, 

passing through a minimum value for Br close to 0.5. 

First of all, many authors point out that variations in entropy production and Nusselt number are 

qualitatively similar, since both quantities involve thermal gradients. This observation, which seems 

reasonable in general terms, has exceptions related to specific physical phenomena, such as viscous 

dissipation. In fact, the increase in entropy production can be explained by a reversal of heat transfer. As 

shown in figure 11 illustrating the variation of temperature at the median plane (y=0.5) for different 

Brinkman numbers, the fluid temperature in the right-hand wide compartment is higher (for Br=1) than the 

temperature of the hot wall indicating a reversal of heat transfer from the fluid to the hot wall of the channel, 

characterized by negative thermal gradients. On the other hand, in the left-hand hot compartment, the fluid 

temperature is significantly lower than active wall, reflecting heat transfer from the hot wall to the fluid, 

characterized by a positive Nusselt number. In this case, we can conclude that that a reversal heat transfer can 

lead to a reduction in the average Nusselt number and, on the other hand, to an increase in entropy 

production. 

 

 
 

 

Figure 11: Variation of the fluid temperature with x at y=0.5 

(n=1,4, B=0.5) 

The temperature of the fluid calculated at the median plane (y=0.5) increases as it flows through the 

wide left-hand part of the channel, without any observed influence of viscous dissipation. A bifurcation point, 

warning of Brinkman effect, appears very close to the entrance of the channel, from which the median 

temperature continues to rise. In this region and because of the venturi effect, velocity gradients increase 

considerably, amplifying the source term in the heat equation. Added to this extrinsic cause is an intrinsic 

effect due to the increase in the Brinkman parameter. These two cooperating causes will give rise to 

relatively high viscous dissipation. As a result, the source term in the heat equation becomes significant, 

leading to a considerable increase in fluid temperature.   
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Figure12 : Local Nusselt number (Nu) evolution with x for different Br 

(n=1,4 ; B=0.5) 

To clearly visualize this inversion of heat transfer, the local Nusselt number on the hot walls of the 

left and right wide pipes is plotted in figure12. As observed, Nu decreases at  the two active walls (0≤x≤2 and 

4≤x≤6) for Br below 0.8 translating heat transfer from the walls to the fluid. From Br=0.8 onwards, Nu 

remains positive on the left-hand hot wall whereas it becomes negative as soon as the fluid enters the right-

hand wide compartment, indicating a reversal in the direction of heat transfer. In this case, the fluid heats up 

in the wide right-hand compartment by convective effect, then re-enters the narrowed channel, where it heats 

up this time by viscous dissipation due to the increase in its velocity and Brinkman number. The temperature 

of the fluid exceeds that of the walls, reversing the direction of the thermal gradients. 

VI Conclusion 

Thermodynamics irreversibility and heat transfer for a non-Newtonian fluid with viscous dissipation 

effect in mixed convective flow in a horizontal porous channel with singularity was numerically studied. The 

set of governing equation, written under extended Darcy -Forchheimer formulation,  is solved using 

COMSOL software. The model of power index is used. The main results found are summarized in the 

following points: 

1. For constant B, Num is maximal for shear-thinning fluid (n=0.4).  Num decreases as n rises and tends 

towards a minimum value at high n.  

2. For expand ratio B=3/4, the reduction in the production of thermal entropy is 66% when n varies 

from 0.4 to 1.8.  

3. The influence of the expand ratio B on Num and ST is highly significant for shear-thinning fluid, 

slight for Newtonian fluids and almost absent for shear thickening fluids (n˃1).  

4. The decrease in entropy production is about 12%, 2% and 0.7% for a power index equal to 0.4, 1 

and 1.8 respectively when the aspect ratio is increased from 0.25 to 0.75.  

5. As Darcy number increases, effect of power index on Nusselt number becomes more important. A 

decrease in Nu as the power index increases is observed. 

6. Results show that the greater the Da, the greater the decrease in Nu, when n increases.  

7. Effect of Da is more significant for shear-thinning fluids. Results reveal an increase in created 

entropy of almost 70% for n=0.4 versus 50% for n=1.2 when Da is increased from 10-6 to 10-3. 

8. The irreversibility and heat transfer decrease for shear-thinning fluid are insignificant. We count a 

2% reduction in total entropy generation when Br goes from 0 to 1 for n=0.4.  

9. For shear-thickening fluid (n=1.4) the diminution of Num is more pronounced, and we count a 

decrease by almost 70% as Br grows from 0 to 1.  

10. Behavior of  total created entropy with Br changes in the case of shear-thickening fluid. It consists 

of a decrease followed by an increase, passing through a minimum value for Br close to 0.5.  

11. The increase in entropy production, at relatively high Brinkman number, is the result of a reversal 

in the direction of heat transfer. 
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