

 653

Journal homepage: https://ijeap.org/

International Journal of Engineering and Applied Physics (IJEAP)

Vol. 3, No. 1, January 2023, pp. 653~662

ISSN: 2737-8071

Global and local attention for automatic Arabic text

diacritization

Ali Mijlad1, Yacine El Younoussi2
1,2SIGL Laboratory, National School of Applied Sciences Tétouan, Abdelmalek Essaadi University, Tétouan, Morocco

Article Info ABSTRACT

Article history:

Received Aug 31, 2022

Revised Oct 01, 2022

Accepted Oct 03, 2022

 Automatic Arabic diacritization is the task to restore diacritic or vowel marks

for a non-vocalized Arabic text. This task showed its importance in the

natural language processing NLP field and it helps people with specific

learning difficulties to access Arabic web content. To tackle the problem, we

suggest a letter-based encoder-decoder that uses previous deep learning

attention models known as Luong attention. The training of the models knew

unstable loss. And, as was expected — from the proposed models — the

model that uses local predictive attention achieved the best word and letter

error rates. The best-achieved diacritic error rate in the test data is about

26.80%. Nevertheless, the models need improvements in future work.

Keywords:

Natural language processing

Encoder-decoder

Attention mechanism

Luong attention

Arabic diacritization

This is an open-access article under the CC BY license.

Corresponding Author:

Ali Mijlad,

SIGL Laboratory National School Of Applied Sciences Tétouan,

Abdelmalek Essaadi University,

Tétouan, Morocco.

Email: a.mijlad@uae.ac.ma

1. INTRODUCTION

Arabic is a Semitic language, which can be classified into three levels: classical Arabic, Modern

Standard Arabic MSA, and dialectal Arabic. It follows writing conventions based on consonants and the

choice to include diacritics (vowels) or not. When they are included, they can appear above or below the

letters. Besides, some reasons why diacritics are omitted are: people with good knowledge of Arabic can

infer the vowels in non-diacritized texts, and the speed of typing may decrease if the diacritics are included.

Nevertheless, Arabic vowels are important and can be of great help for people starting to learn that language.

Additionally, they can enhance the reading and learning abilities of dyslexic learners. As mentioned by Al-

Wabil et al.[1], the lack of phonological skills and working memory make an obstacle to learning for Arabic

dyslexics. The excessive use of non-diacritized Arabic text on web content excludes that segment of society

to access Arabic web content.

Bishara’s study[2] shows the liaison between the students with learning disabilities and the

orthographic depth of the Arabic language. Among the group of students who learned reading based on the

fully diacritized form, they got the best measures of phonological and morphological processing, compared to

the group of pupils that learned to read based on partially diacritized texts.

In addition, Arabic diacritics can ameliorate some tasks in the natural language processing NLP

field, like text-to-speech TTS. This, in return, is useful to access Arabic web content for visually impaired

people by ameliorating — as in the work of Abuali et al.[3] — the screen readers’ accuracy. Machine

translation, part-of-speech (POS) tagging, text classification, sentiment analysis, and information retrieval,

are also tasks that can get influenced by Arabic diacritics. Hence, the importance of automating the Arabic

vowels restoration.

https://ijeap.org/
https://creativecommons.org/licenses/by/4.0/

 ISSN: 2737-8071

Int J Eng & App Phy, Vol. 3, No. 1, January 2023: 653 - 662

654

To evaluate the performance of an automatic diacritization system, diacritic error rate DER, and

word error rate WER are the metrics to use. The former parameter calculates the percentage of characters that

have wrong diacritics. The latter returns the ratio of words that have at least one wrong diacritic mark.

Alansary’s work[4] is based on rules to solve the problem. For Gal’s system[5] it used the hidden

Markov model HMM based on the bigram model and the Viterbi algorithm. Elshafei et al.’s work[6] also

uses the HMM, after all the distribution of unigrams, bigrams, and trigrams of words are extracted. Ameur et

al.[7] proposed a system where Arabic diacritization is done in two steps. First, a word-based HMM restores

the diacritics based on the bigram model. Second, for the out-of-vocabulary OOV, a letter-based HMM

restores the diacritics based on a 4-gram model. Hadjir et al.’s work[8] also uses the HMM with a Viterbi

decoder to restore diacritics.

 Rashwan et al.[9] handled the problem by tokenizing the text and applying a memory of context to

each token. Then, two parallel deep networks use the words and their contexts. One of those networks

retrieves the features, while the other does the Part-of-speech POS tagging. The outputs of those deep nets

are fed to another deep network to do the classification.

Belinkov et al.’s work[10] and Abandah et al.[11] used bidirectional recurrent neural networks.

Metwally et al.'s system[12] firstly does the morphological diacritization and the POS tagging,

utilizing the HMM. Secondly, their system restores the same things, but this time for the Out-of-vocabulary

OOV words. Lastly, the system does the syntactic vowelization based on POS tags, morphological features,

and a Conditional Random Fields (CRFs) classifier.

Zayyan et al.[13] tackled the problem using multi-lexical layers composed of word-based n-gram

models, and letter-based n-gram models.

Said et al.’s system[14] is a multilayered sequence. Firstly, common mistakes are auto-corrected

and accompanied by tokenization. Secondly, the unseen words are extracted accompanied by inferring the

morphological features based on rules and a morphological analyzer. Then comes POS tagging based on an

HMM. POS helps in combination with rules to infer the case endings (syntactic diacritics). Eventually, the

Conditional Random Field (CRF) model deals with the out-of-vocabulary OOV.

Shaalan et al.’s work[15] uses lexicon retrieval that relies on an Arabic lexicon. The system also

uses the bigram model. Besides, a Support Vector Machine SVM is used to do the tokenization and POS tag

each token. A decision-maker module uses the three outputs —lexicon, bigram, and POS tags— and selects

the internal diacritics. The case ending module determines the POS, chunk position, and case endings based

on an SVM model.

Shahrour et al.’s system[16] uses MADAMIRA1 as a baseline. They used syntactic features

extracted based on the MaltPaser[17]. To retrieve the morpho-syntactic abstraction they used the J48

classifier.

Chennoufi et al.’s system[18] firstly extracts — based on Alkhalil Morpho Sys2 — the

morphological characteristics and diacritization forms of each word. Secondly, based on rules it eliminates

inappropriate transitions. This is followed by a word-based HMM. Eventually, a letter-based HMM handles

the non-diacritized words.

Fashwan et al.’s work[19] restores the diacritics in two steps. One is morphological-wise using uni-

morphological and statistical processing, morphological-based rules, and the processing of the undiacritized

words (OOV). The second step restores the case endings using syntactic-based rules.

Darwish et al.[20] use a word-based Viterbi algorithm, morphological patterns, the stems, and the

diacritizations of named entities based on sequence labeling and transliteration. SVM ranking, linguistic

rules, and morphological patterns are used to infer the case endings.

Alqudah et al.[21] use MADAMIRA first, then its outputs that have higher confidence parameters

are fed to a BLSTM.

Abbad et al.[22] use a multi-component model to restore diacritics. First, it starts with a

preprocessing phase followed by a deep learning component. Then comes a rule-based correction layer,

followed by a trigram and bigram model, which solve the case of undiacritized words. Then comes the phase

that uses Levenshtein distance for the remaining non-vocalized words.

In this paper, we are going to present an approach to tackle the problem of diacritic restoration. Our

approach mainly uses the attention-based encoder-decoder to solve the issue of diacritization at a letter-based

level. We will apply to the problem three attention variants — global, local monotonic, and local predictive

— proposed by Luong et al.[23] for the translation problem, and we are expecting that the local-predictive-

based model will have the best results as it did for the translation task.

1 https://camel.abudhabi.nyu.edu/madamira/
2 https://sourceforge.net/projects/alkhalil/

Int J Eng & App Phy ISSN: 2737-8071

Global and local attention for automatic Arabic text diacritization (Ali Mijlad)

655

This work gets its novelty, compared to previous work, from the fact that we are comparing three

attention-based deep learning models applied to a character-level — each input token (respectively, output

token) is a character — diacritization problem because the attention-based models were applied at first to

translation problems. This work also shows which of the models to use to solve the diacritization issue, and it

gives what kind of ameliorations the preprocessing phase and the models need for future enhancement.

2. RESEARCH METHOD

2.1. Additional Arabic knowledge background

The basic vowels are mainly grouped into four types. Table 1 presents those four types, where each

diacritic mark is written with the letter “ب” /b/ to make a good illustration. There are short vowels which are

Fathah, Dammah, and Kasrah. Then there is the Tanwin group (nunations) in which every diacritic is written

as a double short vowel. When read, the Tanwin is pronounced as a short vowel with an /n/ sound at the end.

The third group is composed of Shaddah also known as germination. When written it is present in

combination with short vowels, or Tanwin. The last group is composed of Sukun, which is assigned to

consonants to indicate the absence of vowels and the near end of a syllable.

In terms of functionality, we can have two diacritic classes [24]. First, there is the core-diacritic

class, which plays a morphological or lexical role. This class disambiguates the lexical features of the word;

otherwise, it defines the meaning of the word. Second, there is the case ending or the inflectional class that

disambiguates the syntactic features of the same lexeme in a sentence.

Table 1: Arabic diacritics with their International Phonetic Alphabet representation (IPA)

Diacritic Mark Name Type Transl. IPA Word Position

 Fathah Short Vowels a /a/ Any بَ

 Dammah Short Vowels u /u/ Any بَ

 kasrah Short Vowels i /i/ Any بَ

 Tanwin Fath Tanwin F /an/ End باً

 Tanwin Damm Tanwin N /un/ End بَ

 Tanwin Kasr Tanwin K /in/ End بَ

 Shaddah Shaddah ~ : Any بَ

 Sukun Sukun o ∅ Any بَ

2.2. Preprocessing

In this work, we used some preprocessing tasks used in the work of Abbad et al.[22]. Only the

characters that have a relation to diacritic restoration are kept. The numbers are replaced by 0. The other

chars are removed before the vowel restoration process. Then, from that sentence, we get a sequence input

and a sequence output. The input sequence contains the mapping to a set of numeric labels representing the

letters, while the output sequence contains the mapping to a set of numeric labels representing the eight

mentioned diacritics in addition to the empty (absence of diacritic), start, and end tokens. Each input

(respectively, output) sequence is padded with zeros to an input max length (respectively, an output max

length).

2.3. Global attention mechanism applied to diacritic restoration

Our proposed system is based on the sequence to sequence with the attention mechanism model. We

took the problem as a translation problem, where each input token is a letter and each target token is a

diacritic mark. The model uses the baseline form of the Luong attention mechanism[23], also known as

global attention. The aforementioned attention takes into consideration all the input sequence letters to make

predictions. Figure 1 shows how Luong’s attention works:

https://en.wikipedia.org/wiki/Voiced_bilabial_plosive

 ISSN: 2737-8071

Int J Eng & App Phy, Vol. 3, No. 1, January 2023: 653 - 662

656

2.3.1. Encoder :

The encoder is composed of an embedding layer followed by a Gated Recurrent Unit GRU layer.

The GRU inputs at each timestep 𝑡 the embedded representation of 𝑥𝑡 and the previously hidden state ℎ𝑡−1 to

produce the hidden state ℎ𝑡 as follows:

ℎ𝑡 = 𝐺𝑅𝑈(𝑒𝑚𝑏𝑒𝑑(𝑥𝑡), ℎ𝑡−1) (1)

The encoder output, at the end of the sequence, all the hidden states expressed as ℎ̅𝑠 = {ℎ1, … , ℎ𝑇𝑥
},

where 𝑇𝑥 is the length of the sequence.

2.3.2. Decoder:

The decoding does the following loop up to the end of the sequence:

i. First computes the hidden state ℎ𝑡 based on the previously hidden state ℎ𝑡−1 and the previous output 𝑦𝑡−1

ii. Align the source hidden state set ℎ̅𝑠 with hidden state ℎ𝑡 to calculate the score as follows:

𝑠𝑐𝑜𝑟𝑒(ℎ𝑡 , ℎ̅𝑠) = 𝑎(ℎ𝑡 , ℎ̅𝑠) = 𝑉𝑎𝑇𝑎𝑛ℎ(𝑊𝑎[ℎ𝑡 , ℎ̅𝑠]) (2)

𝑉𝑎 here is a trainable weight vector, and 𝑊𝑎 is a trainable weight matrix.

iii. Calculate the attention weight vector:

𝛼𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒(ℎ𝑡 , ℎ̅𝑠)) (3)

iv. Determine the context vector as a weighted average over all source hidden states:

𝑐𝑡 = 𝛼𝑡 × ℎ̅𝑠 (4)

v. Given 𝑊𝑐 a trainable weight matrix, the attentional hidden state is calculated:

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝑐[𝑐𝑡 , ℎ𝑡]) (5)

vi. The attentional hidden state ℎ̃𝑡 is weighted – based on the trainable weight matrix 𝑊𝑠 – and input to a

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 layer to produce the expected char at the time step 𝑡 :

𝑃(𝑦𝑡 𝑦 < 𝑡⁄ , 𝑥) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑠. ℎ̃𝑡) (6)

Context vector

Attention layer

Global align weights

ℎ̅𝑠 ℎ𝑡

𝑎𝑡

𝑐𝑡

ℎ̃𝑡

𝑦𝑡

Figure 1: Global attention model by Luong et al.

Int J Eng & App Phy ISSN: 2737-8071

Global and local attention for automatic Arabic text diacritization (Ali Mijlad)

657

2.4. Local attention applied to diacritic restoration

We tackled here the problem by the use of the local forms of the Luong attention mechanism[23].

The local attention variants proposed by Luong et al.[23] concentrate only on a smaller subset of the source

positions per target token. Figure 2 shows Luong local attention model:

2.4.1. Encoder:

It does the same thing as the one defined in the global attention model part. The encoder here outputs a set of

hidden states 𝐻 = {ℎ1, … , ℎ𝑇𝑥
}, where 𝑇𝑥 is the length of the sequence.

2.4.2. Decoder:

The decoder in the sequence to sequence with local attention, at each time step it does the following:

i. First, it takes the hidden state ℎ𝑡 at the top layer of the GRU.

ii. The model predicts a single alignment position 𝑝𝑡 , this help align the position of the current target t with

the source token positions. This alignment can be either monotonic or predictive.

The monotonic alignment assumes that the source and target are monotonically aligned. While the

predictive one does not assume that rough alignment and it is calculated as:

𝑝𝑡 = 𝑆𝑙 . 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑉𝑝𝑇𝑎𝑛ℎ(𝑊𝑝ℎ𝑡)) (7)

Where 𝑉𝑝 and 𝑊𝑝 are trainable parameters, 𝑆𝑙: is the length of the input sentence.

The alignment 𝑝𝑡 — either monotonic or predictive — is used to determine, at each time step, the windows

[𝑝𝑡 − 𝐷, 𝑝𝑡 + 𝐷]. This gives the encoder hidden states ℎ̅𝑠 to be taken into consideration.

iii. The alignment of the source states ℎ̅𝑠 with the hidden state ℎ𝑡 is calculated as in equation (2).

iv. Calculate attention weights; for local monotonic, it is calculated as in the equation (3), while for the local

predictive it uses, in addition, a Gaussian distribution centered at 𝑝𝑡 as follows:

𝛼𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒(ℎ𝑡 , ℎ̅𝑠) × 𝑒𝑥𝑝 (−
(𝑠−𝑝𝑡)2

2𝜎2) (8)

Where s are integers within the window [𝑝𝑡 − 𝐷, 𝑝𝑡 + 𝐷], and 𝜎 = 𝐷/2

v. The context vector is calculated as in equation (4).

vi. Attentional hidden state ℎ̃𝑡 is calculated as in equation (5).

2.5. Dataset

We used in this work the free-available benchmark dataset used in the comparative study of Fadel et

al.[25]. That dataset was derived from different chosen books from the Tashkeela corpus. Then it was — in

the same work of Fadel et al.[25] — cleaned, processed, and split into a training set with a percentage of

90%, and the remaining 10% was split in half for the validation and testing sets.

Context vector

Attention layer

Local weights

ℎ̅𝑠 ℎ𝑡

𝑐𝑡

ℎ𝑡
𝑦𝑡

𝑎𝑡 𝑝
𝑡

Aligned position

Figure 2: Local attention model by Luong et al.

 ISSN: 2737-8071

Int J Eng & App Phy, Vol. 3, No. 1, January 2023: 653 - 662

658

From those three files provided by the mentioned work, we derived three other files, where each

input sentence of the model has a maximum number of chars equal to 100. We have chosen that length

because of the hardware limitations we have, and the model we have here is a letter-based one.

We extracted more information about the final dataset we used. Table 2 shows more information

about the tokens, chars, and sentences in the different datasets. Table 3 shows the percentage of the unseen

words in the validation and blind sets in comparison to the train set.

Table 2. Some statistics about the datasets used in this work

 Train set Validation set test set

Characters 7622220 377897 393552

Tokens 1177062 58635 60591

Numbers 2301 123 138

Digits 8978 480 507

Arabic words 1015627 50387 52179

Arabic letters 4015335 198913 207293

Diacritics 3431148 170025 177099

Undiacritized forms 75615 12747 13440

Diacritized forms 114792 16507 17233

Number of sentences 121531 6156 6417

Table 3. Percentage of out-of-vocabulary (OOV) in validation and blind sets compared to the training set

 Validation set Test set

Diacritized OOV Arabic words (%) 18.78 20.03

Undiacritized OOV Arabic words

(%)

13.97 15.59

2.6. Evaluation metrics

As in previous works to evaluate our model, we used the diacritic and word error rates. Specifically,

the ones defined in the work of Fadel et al.[25].

i. Diacritic error rate (DER) is the rate to attribute wrong diacritics to chars in the text.

ii. Word error rate (WER) is the rate of words that have at worst one wrong vowel mark.

Those metrics — when calculated in Fadel et al.[25]'s work— non-Arabic characters are ignored,

which is not the case in some previous works. This can give an unbiased view of the results. Furthermore,

you have the choice to include the 'no-diacritic' option, which includes or does not the number of

undiacritized letters from the original text. Additionally, the case-ending count can be included or not while

computing those metrics.

We also report the Sparse-Categorical-Crossentropy loss of the models during the training.

3. RESULTS AND DISCUSSIONS

3.1. Loss versus epochs:

In figure 3, the global-attention-based model has achieved the lowest validation loss value of

0.11375 at epoch number 2. We can see here that the model has low losses from the first epoch. We set the

model to patience for three additional epochs to verify if the validation loss could reach another minimum.

After the second epoch, the model overfits the data. The overfitting explanation is that the model could be too

complicated for the data. That is why we saved the model at epoch 2.
Figure 4 shows that the local-monotonic-based model has achieved the lowest loss at epoch 5 with a

value of 0.0859. Here from the first epoch, the loss values were higher, and the model took 5 epochs to find a

minimal validation loss. Here also the early stopping helped the model not to go further in the training and

saved the best weights of the model at epoch 5.

Int J Eng & App Phy ISSN: 2737-8071

Global and local attention for automatic Arabic text diacritization (Ali Mijlad)

659

Figure 5. Loss vs epoch for the local-predictive-attention-based model

Figure 4: Loss vs epoch for the local-monotonic-attention-based model

Figure 3. Loss vs epoch for the global-attention-based model

 ISSN: 2737-8071

Int J Eng & App Phy, Vol. 3, No. 1, January 2023: 653 - 662

660

Figure 5 shows the loss improvement during the training phase of the local-predictive-based model.

We saved the model at epoch number 6 where the model reach a low validation loss of value 0.09910.

Generally, the loss of the three models is not going smoothly to the minimum value. Those

oscillations of the loss — we suggest — are due to the size of the network, or also the learning rate. Since the

models we suggest have a small network size in terms of the number of neurons, this causes a lack of

relationship representations; and that makes each batch change the network considerably.

3.2. The Diacritic and word error rates:
Tables 4 and 5 show the diacritic and word error rates achieved on the test set by the three models.

The model with local predictive attention performs better on the blind dataset. We also can see that the

monotonic performs badly compared to the global attention; this can be explained by the fact the output

tokens are not all the time aligned with input tokens. One solution to this could be to augment the

window[𝑝𝑡 − 𝐷, 𝑝𝑡 + 𝐷]. Due to the instability of the learning of the three models, we can have a hint about

the high error rates. We suggest in the next subsection solutions to address the problems of high error rates

and unstable loss values.

Table 4: diacritic error rates of the three models

Systems

Diacritic Error Rate: DER (%)

Including the ‘no-diacritic’ class Excluding the ‘no-diacritic’

class

With case

ending

Without case

ending

With case

ending

Without case

ending

Global-attention-based model 43.90 41.26 49.27 46.11

Local-monotonic-attention-based model 50.10 48.07 52.85 50.30

Local-predictive-attention-based model 26.80 23.94 31.59 28.17

Table 5: word error rates of the three models

Systems

Diacritic Error Rate: WER (%)

Including the ‘no

diacritic’ class

Excluding the ‘no-

diacritic’ class

With case

ending

Without

case ending

With case

ending

Without

case ending

Global-attention-based model 73.06 62.92 72.29 62.38

Local-monotonic-attention-based model 73.10 65.69 72.01 64.73

Local-predictive-attention-based model 57.34 44.60 56.75 44.30

3.3. Recommendations to ameliorate the systems:
We suggest the following:

- Change the size of the networks: The networks do not have a sufficient number of neurons (we tried a

smaller size due to hardware limitations) to represent the relationships. That could be the reason for the

oscillating loss.

- Find the right learning rate.

- Add depth to the network, to allow learning more abstract features.

- Try some regularization techniques for the models.

- Modify the output data architecture; we suggest here two ways of representing the output data:

Int J Eng & App Phy ISSN: 2737-8071

Global and local attention for automatic Arabic text diacritization (Ali Mijlad)

661

i. Two different output sequences: one sequence is for the presence of germination diacritic, and the other

output sequence contains all diacritics except the germination diacritic. This way the two output

sequences are roughly aligned with the input sequence.

ii. One output sequence: here the output sequence takes into account that the germination is present in a

sequence it is combined with the following diacritic (either a short vowel, a nunation, or the empty

vowel). This also will make all the input and output data roughly aligned. That rough alignment can

make the local-monotonic attention perform better.

4. Conclusion
Automatic Arabic diacritization is a natural language processing NLP task that aims to restore

diacritic marks for Arabic text. It helps novice learners and people with specific learning difficulties to have

access to web Arabic web content. It can also be useful for more NLP tasks.

 In this paper, we presented three attention mechanisms[23] applied to that task. As expected, the

predictive-attention-based model achieved better results compared to other attention-based models. However,

due to the hardware limitation, we chose a small dataset and small network sizes. This led to unstable loss

during training which caused bad error rates. We are aiming to ameliorate the three systems and compare

them to relevant related work.

REFERENCES

[1] A. Al-Wabil, P. Zaphiris, and S. Wilson, “Web design for dyslexics: Accessibility of Arabic content,” in

Computers Helping People with Special Needs, 2006, vol. 4061, pp. 817–822, doi:

https://doi.org/10.1007/11788713_119.

[2] S. Bishara, “The orthographic depth and promotion of students with learning disabilities,” Cogent Educ., vol. 6, no.

01, 2019, doi: https://doi.org/10.1080/2331186X.2019.1646384.

[3] B. Abuali and M.-B. Kurdy, “Full Diacritization of the Arabic Text to Improve Screen Readers for the Visually

Impaired,” Adv. Human-Computer Interact., vol. 2022, 2022, doi: https://doi.org/10.1155/2022/1186678.

[4] S. Alansary, “Alserag: An Automatic Diacritization System for Arabic,” in Intelligent Natural Language

Processing: Trends and Applications (Studies in Computational Intelligence, 740), 1st ed., K. Shaalan, A. E.

Hassanien, and F. Tolba, Eds. Springer, 2018, pp. 523–543.

[5] Y. Gal, “An HMM approach to vowel restoration in Arabic and Hebrew,” in Proceedings of the ACL-02 Workshop

on Computational Approaches to Semitic Languages, 2002, pp. 1–7, doi: 10.3115/1118637.1118641.

[6] M. Elshafei, H. Al-Muhtaseb, and M. M. Alghamdi, “Statistical methods for automatic diacritization of Arabic

text,” in proceedings 18th National computer Conference, 2006, pp. 301–306, [Online]. Available:

http://almuhtaseb.net/Research/StaMetAutDiaArTex.pdf.

[7] M. H. Ameur, Y. Moulahoum, and A. Guessoum, “Restoration of Arabic Diacritics Using a Multilevel Statistical

Model,” in 5th International Conference on Computer Computer Science and Its Applications (CIIA), 2015, pp.

181–192, doi: 10.1007/978-3-319-19578-0_15.

[8] I. Hadjir, M. Abbache, and F. Z. Belkredim, “An Approach for Arabic Diacritization,” in 24th International

Conference on Applications of Natural Language to Information Systems, NLDB 2019, 2019, vol. 11608, pp. 337–

344, doi: https://doi.org/10.1007/978-3-030-23281-8_29.

[9] M. Rashwan, A. Al Sallab, H. Raafat, and A. Rafea, “Automatic Arabic diacritics restoration based on deep nets,”

in Proceedings of the EMNLP 2014 Workshop on Arabic Natural Language Processing (ANLP), 2014, pp. 65–72,

doi: 10.3115/v1/W14-3608.

[10] Y. Belinkov and J. Glass, “Arabic Diacritization with Recurrent Neural Networks,” in Proceedings of the 2015

Conference on Empirical Methods in Natural Language Processing, 2015, pp. 2281–2285, doi: 10.18653/v1/D15-

1274.

[11] G. A. Abandah, A. Graves, B. Al-Shagoor, A. Arabiyat, F. Jamour, and M. Al-Taee, “Automatic diacritization of

Arabic text using recurrent neural networks,” Int. J. Doc. Anal. Recognit., vol. 18, no. 2, pp. 183–197, 2015, doi:

https://doi.org/10.1007/s10032-015-0242-2.

[12] A. S. Metwally and M. A. Rashwan, “A multi-layered approach for Arabic text diacritization,” in 2016 IEEE

International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), 2016, pp. 389–393, doi:

10.1109/ICCCBDA.2016.7529589.

[13] A. A. Zayyan, M. Elmahdy, H. Binti Husni, and J. M. Al Ja’am, “Automatic Diacritics Restoration for Dialectal

Arabic Text,” Int. J. Comput. Inf. Sci., vol. 12, no. 2, pp. 159–165, 2016, doi: 10.21700/ijcis.2016.119.

[14] A. Said, M. El-sharqwi, A. Chalabi, and E. Kamal, “A Hybrid Approach for Arabic Diacritization,” in 18th

International Conference on Applications of Natural Language to Information Systems, NLDB 2013, 2013, vol.

7934, pp. 53–64, doi: 10.1007/978-3-642-38824-8.

[15] K. Shaalan, H. M. Abo Bakr, and I. Ziedan, “A hybrid approach for building Arabic diacritizer,” in The EACL

2009 workshop on computational approaches to semitic languages, 2009, pp. 27–35, [Online]. Available:

http://dl.acm.org/citation.cfm?id=1621774.1621780.

 ISSN: 2737-8071

Int J Eng & App Phy, Vol. 3, No. 1, January 2023: 653 - 662

662

[16] A. Shahrour, S. Khalifa, and N. Habash, “Improving Arabic Diacritization through Syntactic Analysis,” in

Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015, pp. 1309–1315,

doi: 10.18653/v1/D15-1152.

[17] J. Nivre, J. Hall, and J. Nilsson, “MaltParser: A Data-Driven Parser-Generator for Dependency Parsing,” in

Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06), 2006, pp.

2216–2219, [Online]. Available: http://www.lrec-conf.org/proceedings/lrec2006/pdf/162_pdf.pdf.

[18] A. Chennoufi and A. Mazroui, “Morphological, syntactic and diacritics rules for automatic diacritization of Arabic

sentences,” J. King Saud Univ. - Comput. Inf. Sci., vol. 29, no. 2, pp. 156–163, 2017, doi:

10.1016/j.jksuci.2016.06.004.

[19] A. Fashwan and S. Alansary, “SHAKKIL: an automatic diacritization system for modern standard Arabic texts,” in

Proceedings of the Third Arabic Natural Language Processing Workshop, 2017, pp. 84–93, doi: 10.18653/v1/W17-

1311.

[20] K. Darwish, H. Mubarak, and A. Abdelali, “Arabic Diacritization: Stats, Rules, and Hacks,” in Proceedings of the

Third Arabic Natural Language Processing Workshop, 2017, pp. 9–17, doi: 10.18653/v1/W17-1302.

[21] S. Alqudah, G. Abandah, and A. Arabiyat, “Investigating Hybrid Approaches for Arabic Text Diacritization with

Recurrent Neural Networks,” in 2017 IEEE Jordan Conference on Applied Electrical Engineering and Computing

Technologies (AEECT), 2017, pp. 1–6, doi: 10.1109/AEECT.2017.8257765.

[22] H. Abbad and S. Xiong, “Multi-components System for Automatic Arabic Diacritization,” in 42nd European

Conference on Information Retrieval, ECIR 2020, 2020, vol. 12035, pp. 341–355, doi: https://doi.org/10.1007/978-

3-030-45439-5_23.

[23] M.-T. Luong, H. Pham, and C. D. Manning, “Effective Approaches to Attention-based Neural Machine

Translation,” in Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015,

pp. 1412–1421, doi: 10.18653/v1/D15-1166.

[24] O. Hamed and T. Zesch, “A Survey and Comparative Study of Arabic Diacritization Tools,” J. Lang. Technol.

Comput. Linguist., vol. 32, no. 1, pp. 27–47, 2017.

[25] A. Fadel, I. Tuffaha, B. Al-Jawarneh, and M. Al-Ayyoub, “Arabic Text Diacritization Using Deep Neural

Networks,” in 2019 2nd International Conference on Computer Applications & Information Security (ICCAIS),

May 2019, pp. 1–7, doi: 10.1109/CAIS.2019.8769512.

