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 Automatic Arabic diacritization is the task to restore diacritic or vowel marks 

for a non-vocalized Arabic text. This task showed its importance in the 

natural language processing NLP field and it helps people with specific 

learning difficulties to access Arabic web content. To tackle the problem, we 

suggest a letter-based encoder-decoder that uses previous deep learning 

attention models known as Luong attention. The training of the models knew 

unstable loss. And, as was expected — from the proposed models — the 

model that uses local predictive attention achieved the best word and letter 

error rates. The best-achieved diacritic error rate in the test data is about 

26.80%. Nevertheless, the models need improvements in future work. 
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1. INTRODUCTION 

Arabic is a Semitic language, which can be classified into three levels: classical Arabic, Modern 

Standard Arabic MSA, and dialectal Arabic. It follows writing conventions based on consonants and the 

choice to include diacritics (vowels) or not. When they are included, they can appear above or below the 

letters. Besides, some reasons why diacritics are omitted are: people with good knowledge of Arabic can 

infer the vowels in non-diacritized texts, and the speed of typing may decrease if the diacritics are included. 

Nevertheless, Arabic vowels are important and can be of great help for people starting to learn that language. 

Additionally, they can enhance the reading and learning abilities of dyslexic learners. As mentioned by Al-

Wabil et al.[1], the lack of phonological skills and working memory make an obstacle to learning for Arabic 

dyslexics. The excessive use of non-diacritized Arabic text on web content excludes that segment of society 

to access Arabic web content. 

Bishara’s study[2] shows the liaison between the students with learning disabilities and the 

orthographic depth of the Arabic language. Among the group of students who learned reading based on the 

fully diacritized form, they got the best measures of phonological and morphological processing, compared to 

the group of pupils that learned to read based on partially diacritized texts. 

In addition, Arabic diacritics can ameliorate some tasks in the natural language processing NLP 

field, like text-to-speech TTS. This, in return, is useful to access Arabic web content for visually impaired 

people by ameliorating — as in the work of Abuali et al.[3] — the screen readers’ accuracy. Machine 

translation, part-of-speech (POS) tagging, text classification, sentiment analysis, and information retrieval, 

are also tasks that can get influenced by Arabic diacritics. Hence, the importance of automating the Arabic 

vowels restoration. 

https://ijeap.org/
https://creativecommons.org/licenses/by/4.0/
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To evaluate the performance of an automatic diacritization system, diacritic error rate DER, and 

word error rate WER are the metrics to use. The former parameter calculates the percentage of characters that 

have wrong diacritics. The latter returns the ratio of words that have at least one wrong diacritic mark. 

Alansary’s work[4] is based on rules to solve the problem. For Gal’s system[5] it used the hidden 

Markov model HMM based on the bigram model and the Viterbi algorithm. Elshafei et al.’s work[6] also 

uses the HMM, after all the distribution of unigrams, bigrams, and trigrams of words are extracted. Ameur et 

al.[7] proposed a system where Arabic diacritization is done in two steps. First, a word-based HMM restores 

the diacritics based on the bigram model. Second, for the out-of-vocabulary OOV, a letter-based HMM 

restores the diacritics based on a 4-gram model. Hadjir et al.’s work[8] also uses the HMM with a Viterbi 

decoder to restore diacritics. 

 Rashwan et al.[9] handled the problem by tokenizing the text and applying a memory of context to 

each token. Then, two parallel deep networks use the words and their contexts. One of those networks 

retrieves the features, while the other does the Part-of-speech POS tagging. The outputs of those deep nets 

are fed to another deep network to do the classification. 

Belinkov et al.’s work[10] and Abandah et al.[11] used bidirectional recurrent neural networks.  

Metwally et al.'s system[12] firstly does the morphological diacritization and the POS tagging, 

utilizing the HMM. Secondly, their system restores the same things, but this time for the Out-of-vocabulary 

OOV words. Lastly, the system does the syntactic vowelization based on POS tags, morphological features, 

and a Conditional Random Fields (CRFs) classifier.  

Zayyan et al.[13] tackled the problem using multi-lexical layers composed of word-based n-gram 

models, and letter-based n-gram models.  

Said et al.’s system[14] is a multilayered sequence.  Firstly, common mistakes are auto-corrected 

and accompanied by tokenization. Secondly, the unseen words are extracted accompanied by inferring the 

morphological features based on rules and a morphological analyzer. Then comes POS tagging based on an 

HMM. POS helps in combination with rules to infer the case endings (syntactic diacritics). Eventually, the 

Conditional Random Field (CRF) model deals with the out-of-vocabulary OOV.  

Shaalan et al.’s work[15] uses lexicon retrieval that relies on an Arabic lexicon. The system also 

uses the bigram model. Besides, a Support Vector Machine SVM is used to do the tokenization and POS tag 

each token. A decision-maker module uses the three outputs —lexicon, bigram, and POS tags— and selects 

the internal diacritics. The case ending module determines the POS, chunk position, and case endings based 

on an SVM model.  

Shahrour et al.’s system[16] uses MADAMIRA1 as a baseline. They used syntactic features 

extracted based on the MaltPaser[17]. To retrieve the morpho-syntactic abstraction they used the J48 

classifier.  

Chennoufi et al.’s system[18] firstly extracts — based on Alkhalil Morpho Sys2  — the 

morphological characteristics and diacritization forms of each word. Secondly, based on rules it eliminates 

inappropriate transitions. This is followed by a word-based HMM. Eventually, a letter-based HMM handles 

the non-diacritized words.  

Fashwan et al.’s work[19] restores the diacritics in two steps. One is morphological-wise using uni-

morphological and statistical processing, morphological-based rules, and the processing of the undiacritized 

words (OOV). The second step restores the case endings using syntactic-based rules. 

Darwish et al.[20] use a word-based Viterbi algorithm, morphological patterns,  the stems, and the 

diacritizations of named entities based on sequence labeling and transliteration. SVM ranking, linguistic 

rules, and morphological patterns are used to infer the case endings.  

Alqudah et al.[21] use MADAMIRA first, then its outputs that have higher confidence parameters 

are fed to a BLSTM.  

Abbad et al.[22] use a multi-component model to restore diacritics. First, it starts with a 

preprocessing phase followed by a deep learning component. Then comes a rule-based correction layer, 

followed by a trigram and bigram model, which solve the case of undiacritized words. Then comes the phase 

that uses Levenshtein distance for the remaining non-vocalized words. 

In this paper, we are going to present an approach to tackle the problem of diacritic restoration. Our 

approach mainly uses the attention-based encoder-decoder to solve the issue of diacritization at a letter-based 

level. We will apply to the problem three attention variants — global, local monotonic, and local predictive 

— proposed by Luong et al.[23] for the translation problem, and we are expecting that the local-predictive-

based model will have the best results as it did for the translation task. 

 
1  https://camel.abudhabi.nyu.edu/madamira/ 
2  https://sourceforge.net/projects/alkhalil/ 
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This work gets its novelty, compared to previous work, from the fact that we are comparing three 

attention-based deep learning models applied to a character-level — each input token (respectively, output 

token) is a character — diacritization problem because the attention-based models were applied at first to 

translation problems. This work also shows which of the models to use to solve the diacritization issue, and it 

gives what kind of ameliorations the preprocessing phase and the models need for future enhancement. 

 

2. RESEARCH METHOD 

2.1. Additional Arabic knowledge background 

 

The basic vowels are mainly grouped into four types. Table 1 presents those four types, where each 

diacritic mark is written with the letter “ب” /b/ to make a good illustration. There are short vowels which are  

Fathah, Dammah, and Kasrah. Then there is the Tanwin group (nunations) in which every diacritic is written 

as a double short vowel. When read, the Tanwin is pronounced as a short vowel with an /n/ sound at the end. 

The third group is composed of Shaddah also known as germination. When written it is present in 

combination with short vowels, or Tanwin. The last group is composed of Sukun, which is assigned to 

consonants to indicate the absence of vowels and the near end of a syllable. 

In terms of functionality, we can have two diacritic classes [24]. First, there is the core-diacritic 

class, which plays a morphological or lexical role. This class disambiguates the lexical features of the word; 

otherwise, it defines the meaning of the word. Second, there is the case ending or the inflectional class that 

disambiguates the syntactic features of the same lexeme in a sentence.  

 
Table 1: Arabic diacritics with their International Phonetic Alphabet representation (IPA) 

 

Diacritic Mark Name Type Transl. IPA Word   Position 

 Fathah Short Vowels a /a/ Any بَ 

 Dammah Short Vowels u /u/ Any بَ 

 kasrah Short Vowels i /i/ Any بَ 

 Tanwin Fath Tanwin F /an/ End باً

 Tanwin Damm Tanwin N /un/ End بَ 

 Tanwin Kasr Tanwin K /in/ End بَ 

 Shaddah Shaddah ~ : Any بَ 

 Sukun Sukun o ∅ Any بَ 

 

2.2. Preprocessing 

 

In this work, we used some preprocessing tasks used in the work of Abbad et al.[22]. Only the 

characters that have a relation to diacritic restoration are kept. The numbers are replaced by 0. The other 

chars are removed before the vowel restoration process. Then, from that sentence, we get a sequence input 

and a sequence output. The input sequence contains the mapping to a set of numeric labels representing the 

letters, while the output sequence contains the mapping to a set of numeric labels representing the eight 

mentioned diacritics in addition to the empty (absence of diacritic), start, and end tokens. Each input 

(respectively, output) sequence is padded with zeros to an input max length (respectively, an output max 

length). 

 

2.3. Global attention mechanism applied to diacritic restoration 

 

Our proposed system is based on the sequence to sequence with the attention mechanism model. We 

took the problem as a translation problem, where each input token is a letter and each target token is a 

diacritic mark. The model uses the baseline form of the Luong attention mechanism[23], also known as 

global attention. The aforementioned attention takes into consideration all the input sequence letters to make 

predictions. Figure 1 shows how Luong’s attention works: 

 

 

https://en.wikipedia.org/wiki/Voiced_bilabial_plosive
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2.3.1. Encoder : 

 
The encoder is composed of an embedding layer followed by a Gated Recurrent Unit GRU layer. 

The GRU inputs at each timestep 𝑡 the embedded representation of 𝑥𝑡 and the previously hidden state ℎ𝑡−1 to 

produce the hidden state ℎ𝑡 as follows: 

ℎ𝑡 = 𝐺𝑅𝑈(𝑒𝑚𝑏𝑒𝑑(𝑥𝑡), ℎ𝑡−1)      ( 1 )      

The encoder output, at the end of the sequence, all the hidden states expressed as  ℎ̅𝑠 = {ℎ1, … , ℎ𝑇𝑥
}, 

where 𝑇𝑥 is the length of the sequence. 

 

2.3.2. Decoder: 

 

The decoding does the following loop up to the end of the sequence: 

i. First computes the hidden state  ℎ𝑡 based on the previously hidden state ℎ𝑡−1 and the previous output 𝑦𝑡−1 

ii. Align the source hidden state set  ℎ̅𝑠 with hidden state ℎ𝑡 to calculate the score as follows: 

 

𝑠𝑐𝑜𝑟𝑒(ℎ𝑡 , ℎ̅𝑠) = 𝑎(ℎ𝑡 , ℎ̅𝑠) = 𝑉𝑎𝑇𝑎𝑛ℎ(𝑊𝑎[ℎ𝑡 , ℎ̅𝑠])   ( 2 ) 

 

𝑉𝑎 here is a trainable weight vector, and 𝑊𝑎 is a trainable weight matrix. 

iii. Calculate the attention weight vector: 

𝛼𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒(ℎ𝑡 , ℎ̅𝑠))                              ( 3 ) 

 

iv. Determine the context vector as a weighted average over all source hidden states: 

 

𝑐𝑡 = 𝛼𝑡 × ℎ̅𝑠      ( 4 ) 

 

v. Given 𝑊𝑐 a trainable weight matrix, the attentional hidden state is calculated: 

 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝑐[𝑐𝑡 , ℎ𝑡])           ( 5 ) 

 

vi. The attentional hidden state ℎ̃𝑡 is weighted – based on the trainable weight matrix 𝑊𝑠 –  and input to a 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 layer to produce the expected char  at the time step 𝑡 : 

 

𝑃(𝑦𝑡 𝑦 < 𝑡⁄ , 𝑥) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑠. ℎ̃𝑡)    ( 6 ) 

 

 

Context vector 

Attention layer 

Global align weights 

ℎ̅𝑠 ℎ𝑡 

𝑎𝑡 

𝑐𝑡 

ℎ̃𝑡 

𝑦𝑡 

Figure 1: Global attention model by Luong et al. 
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2.4. Local attention applied to diacritic restoration 

We tackled here the problem by the use of the local forms of the Luong attention mechanism[23]. 

The local attention variants proposed by Luong et al.[23] concentrate only on a smaller subset of the source 

positions per target token. Figure 2 shows Luong local attention model: 

2.4.1. Encoder: 

 

It does the same thing as the one defined in the global attention model part. The encoder here outputs a set of 

hidden states  𝐻 = {ℎ1, … , ℎ𝑇𝑥
}, where 𝑇𝑥 is the length of the sequence. 

 

2.4.2. Decoder: 

The decoder in the sequence to sequence with local attention, at each time step it does the following: 

i. First, it takes the hidden state ℎ𝑡 at the top layer of the GRU. 

ii.  The model predicts a single alignment position 𝑝𝑡 , this help align the position of the current target t with 

the source token positions. This alignment can be either monotonic or predictive. 

The monotonic alignment assumes that the source and target are monotonically aligned. While the 

predictive one does not assume that rough alignment and it is calculated as: 

 

𝑝𝑡 = 𝑆𝑙 . 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑉𝑝𝑇𝑎𝑛ℎ(𝑊𝑝ℎ𝑡))      ( 7) 

 

Where 𝑉𝑝 and 𝑊𝑝 are trainable parameters, 𝑆𝑙: is the length of the input sentence. 

The alignment 𝑝𝑡  — either monotonic or predictive — is used to determine, at each time step, the windows 

[𝑝𝑡 − 𝐷, 𝑝𝑡 + 𝐷]. This gives the encoder hidden states ℎ̅𝑠 to be taken into consideration. 

iii. The alignment of the source states ℎ̅𝑠 with the hidden state ℎ𝑡 is calculated as in equation (2). 

iv. Calculate attention weights; for local monotonic, it is calculated as in the equation (3), while for the local 

predictive it uses, in addition, a Gaussian distribution centered at 𝑝𝑡  as follows: 

 

𝛼𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒(ℎ𝑡 , ℎ̅𝑠) × 𝑒𝑥𝑝 (−
(𝑠−𝑝𝑡)2

2𝜎2 )   ( 8)    

            

Where s are integers within the window [𝑝𝑡 − 𝐷, 𝑝𝑡 + 𝐷], and 𝜎 = 𝐷/2 

v. The context vector is calculated as in equation (4). 

vi. Attentional hidden state ℎ̃𝑡 is calculated as in equation (5). 

 

2.5. Dataset 

We used in this work the free-available benchmark dataset used in the comparative study of Fadel et 

al.[25]. That dataset was derived from different chosen books from the Tashkeela corpus. Then it was — in 

the same work of Fadel et al.[25] —  cleaned, processed, and split into a training set with a percentage of 

90%, and the remaining 10%  was split in half for the validation and testing sets. 

Context vector 

Attention layer 

Local weights 

ℎ̅𝑠 ℎ𝑡 

𝑐𝑡 

ℎ𝑡 
𝑦𝑡 

𝑎𝑡 𝑝
𝑡
 

Aligned position 

Figure 2: Local attention model by Luong et al. 
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From those three files provided by the mentioned work, we derived three other files, where each 

input sentence of the model has a maximum number of chars equal to 100. We have chosen that length 

because of the hardware limitations we have, and the model we have here is a letter-based one.  

We extracted more information about the final dataset we used. Table 2 shows more information 

about the tokens, chars, and sentences in the different datasets. Table 3 shows the percentage of the unseen 

words in the validation and blind sets in comparison to the train set. 

 
 

Table 2. Some statistics about the datasets used in this work 

  Train set Validation set test set 

Characters 7622220 377897 393552 

Tokens 1177062 58635 60591 

Numbers 2301 123 138 

Digits 8978 480 507 

Arabic words 1015627 50387 52179 

Arabic letters 4015335 198913 207293 

Diacritics 3431148 170025 177099 

Undiacritized forms 75615 12747 13440 

Diacritized forms 114792 16507 17233 

Number of sentences 121531 6156 6417 

 

Table 3. Percentage of out-of-vocabulary (OOV) in validation and blind sets compared to the training set 

 
 Validation set Test set 

Diacritized OOV Arabic words (%) 18.78 20.03 

Undiacritized OOV Arabic words 

(%) 

13.97 15.59 

 

2.6. Evaluation metrics 

As in previous works to evaluate our model, we used the diacritic and word error rates. Specifically, 

the ones defined in the work of Fadel et al.[25]. 

i. Diacritic error rate (DER) is the rate to attribute wrong diacritics to chars in the text.  

ii. Word error rate (WER) is the rate of words that have at worst one wrong vowel mark. 

Those metrics — when calculated in Fadel et al.[25]'s work— non-Arabic characters are ignored, 

which is not the case in some previous works. This can give an unbiased view of the results.  Furthermore, 

you have the choice to include the 'no-diacritic' option, which includes or does not the number of 

undiacritized letters from the original text. Additionally, the case-ending count can be included or not while 

computing those metrics.  

We also report the Sparse-Categorical-Crossentropy loss of the models during the training. 

 

3. RESULTS AND DISCUSSIONS 

3.1. Loss versus epochs: 

In figure 3, the global-attention-based model has achieved the lowest validation loss value of 

0.11375 at epoch number 2. We can see here that the model has low losses from the first epoch. We set the 

model to patience for three additional epochs to verify if the validation loss could reach another minimum. 

After the second epoch, the model overfits the data. The overfitting explanation is that the model could be too 

complicated for the data. That is why we saved the model at epoch 2. 
Figure 4 shows that the local-monotonic-based model has achieved the lowest loss at epoch 5 with a 

value of 0.0859. Here from the first epoch, the loss values were higher, and the model took 5 epochs to find a 

minimal validation loss. Here also the early stopping helped the model not to go further in the training and 

saved the best weights of the model at epoch 5. 
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Figure 5.  Loss vs epoch for the local-predictive-attention-based model 

 

Figure 4: Loss vs epoch for the local-monotonic-attention-based model 

Figure 3.  Loss vs epoch for the global-attention-based model 
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Figure 5 shows the loss improvement during the training phase of the local-predictive-based model. 

We saved the model at epoch number 6 where the model reach a low validation loss of value 0.09910. 

Generally, the loss of the three models is not going smoothly to the minimum value. Those 

oscillations of the loss — we suggest — are due to the size of the network, or also the learning rate. Since the 

models we suggest have a small network size in terms of the number of neurons, this causes a lack of 

relationship representations; and that makes each batch change the network considerably. 

 

3.2. The Diacritic and word error rates: 
Tables 4 and 5 show the diacritic and word error rates achieved on the test set by the three models. 

The model with local predictive attention performs better on the blind dataset. We also can see that the 

monotonic performs badly compared to the global attention; this can be explained by the fact the output 

tokens are not all the time aligned with input tokens. One solution to this could be to augment the 

window[𝑝𝑡 − 𝐷, 𝑝𝑡 + 𝐷]. Due to the instability of the learning of the three models, we can have a hint about 

the high error rates. We suggest in the next subsection solutions to address the problems of high error rates 

and unstable loss values. 

 
Table 4: diacritic error rates of the three models 

Systems 

Diacritic Error Rate:  DER (%) 

Including the ‘no-diacritic’ class Excluding the ‘no-diacritic’  

class 

With case 

ending 

Without case 

ending 

With case 

ending 

Without case 

ending 

Global-attention-based model 43.90 41.26 49.27 46.11 

Local-monotonic-attention-based  model 50.10 48.07 52.85 50.30 

Local-predictive-attention-based model 26.80 23.94 31.59 28.17 

 

 

Table 5: word error rates of the three models 

Systems 

Diacritic Error Rate:  WER (%) 

Including the ‘no 

diacritic’ class 

Excluding the ‘no-

diacritic’  class 

With case 

ending 

Without 

case ending 

With case 

ending 

Without 

case ending 

Global-attention-based model 73.06 62.92 72.29 62.38 

Local-monotonic-attention-based  model 73.10 65.69 72.01 64.73 

Local-predictive-attention-based model 57.34 44.60 56.75 44.30 

 

3.3. Recommendations to ameliorate the systems: 
We suggest the following: 

- Change the size of the networks: The networks do not have a sufficient number of neurons (we tried a 

smaller size due to hardware limitations) to represent the relationships. That could be the reason for the 

oscillating loss. 

- Find the right learning rate. 

- Add depth to the network, to allow learning more abstract features. 

- Try some regularization techniques for the models. 

- Modify the output data architecture; we suggest here two ways of representing the output data: 
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i. Two different output sequences: one sequence is for the presence of germination diacritic, and the other 

output sequence contains all diacritics except the germination diacritic. This way the two output 

sequences are roughly aligned with the input sequence. 

ii. One output sequence: here the output sequence takes into account that the germination is present in a 

sequence it is combined with the following diacritic (either a short vowel, a nunation, or the empty 

vowel). This also will make all the input and output data roughly aligned. That rough alignment can 

make the local-monotonic attention perform better. 

4. Conclusion 
Automatic Arabic diacritization is a natural language processing NLP task that aims to restore 

diacritic marks for Arabic text. It helps novice learners and people with specific learning difficulties to have 

access to web Arabic web content. It can also be useful for more NLP tasks. 

 In this paper, we presented three attention mechanisms[23] applied to that task. As expected, the 

predictive-attention-based model achieved better results compared to other attention-based models. However, 

due to the hardware limitation, we chose a small dataset and small network sizes. This led to unstable loss 

during training which caused bad error rates. We are aiming to ameliorate the three systems and compare 

them to relevant related work. 
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